
www.delta.com.tw/industrialautomation

ASIA

Delta Electronics, Inc.
Taoyuan 1
31-1, Xingbang Road, Guishan Industrial Zone,
Taoyuan County 33370, Taiwan, R.O.C.
TEL: 886-3-362-6301 / FAX: 886-3-362-7267
Delta Electronics (Jiang Su) Ltd.
Wujiang Plant3
1688 Jiangxing East Road,
Wujiang Economy Development Zone,
Wujiang City, Jiang Su Province,
People's Republic of China (Post code: 215200)
TEL: 86-512-6340-3008 / FAX: 86-512-6340-7290
Delta Electronics (Japan), Inc.
Tokyo Office
Delta Shibadaimon Building, 2-1-14 Shibadaimon,
Minato-Ku, Tokyo, 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211
Delta Electronics (Korea), Inc.
234-9, Duck Soo BD 7F, Nonhyun-dong,
Kangnam-ku, Seoul, Korea
Post code : 135-010
TEL: 82-2-515-5303/5 / FAX: 82-2-515-5302

Delta Electronics (Singapore) Pte. Ltd.
8 Kaki Bukit Road 2, \#04-18 Ruby Warehouse Complex,
Singapore 417841
TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Energy Systems (India) Pvt. Ltd.
Plot No. 27 \& 31, Sector-34, EHTP,
Gurgaon-122001 Haryana, India
TEL: 91-124-4169040 / FAX: 91-124-4036045

AMERICA

Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3813 / FAX: 1-919-767-3969

EUROPE

Deltronics (Netherlands) B.V.
Eindhoven Office
De Witbogt 15, 5652 AG Eindhoven, The Netherlands
TEL: 31-40-259-28-50/ FAX: 31-40-259-28-51

Preface

Thank you for choosing DELTA's high-performance VFD-VL Series. The VFD-VL Series is manufactured with high-quality components and materials and incorporates the latest microprocessor technology available.

This manual is to be used for the installation, parameter setting, troubleshooting, and daily maintenance of the AC motor drive. To guarantee safe operation of the equipment, read the following safety guidelines before connecting power to the AC motor drive. Keep this operating manual at hand and distribute to all users for reference.

To ensure the safety of operators and equipment, only qualified personnel familiar with AC motor drive are to do installation, start-up and maintenance. Always read this manual thoroughly before using VFD-VL series AC Motor Drive, especially the WARNING, DANGER and CAUTION notes. Failure to comply may result in personal injury and equipment damage. If you have any questions, please contact your dealer.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

DANGER!

1. AC input power must be disconnected before any wiring to the $A C$ motor drive is made.
2. A charge may still remain in the DC-link capacitors with hazardous voltages, even if the power has been turned off. To prevent personal injury, please ensure that power has turned off before opening the AC motor drive and wait ten minutes for the capacitors to discharge to safe voltage levels.
3. Never reassemble internal components or wiring.
4. The AC motor drive may be destroyed beyond repair if incorrect cables are connected to the input/output terminals. Never connect the AC motor drive output terminals U/T1, V/T2, and W/T3 directly to the AC mains circuit power supply.
5. Ground the VFD-VL using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed. Refer to the Basic Wiring Diagram.
6. VFD-VL series is used only to control variable speed of 3-phase induction motors, NOT for 1phase motors or other purpose.
7. VFD-VL series shall NOT be used for life support equipment or any life safety situation.

WARNING!

1. DO NOT use Hi-pot test for internal components. The semi-conductor used in AC motor drive easily damage by high-voltage.
2. There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. To prevent damage to these components, do not touch these components or the circuit boards with metal objects or your bare hands.
3. Only qualified persons are allowed to install, wire and maintain AC motor drives.

CAUTION!

1. Some parameters settings can cause the motor to run immediately after applying power.
2. DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles.
3. Only use AC motor drives within specification. Failure to comply may result in fire, explosion or electric shock.
4. To prevent personal injury, please keep children and unqualified people away from the equipment.
5. When the motor cable between AC motor drive and motor is too long, the layer insulation of the motor may be damaged. Please use a frequency inverter duty motor or add an AC output reactor to prevent damage to the motor. Refer to appendix B Reactor for details.
6. The rated voltage for $A C$ motor drive must be $\leq 240 \mathrm{~V}$ ($\leq 480 \mathrm{~V}$ for 460 V models) and the mains supply current capacity must be $\leq 5000 \mathrm{~A}$ RMS ($\leq 10000 \mathrm{~A}$ RMS for the $\geq 40 \mathrm{hp}$ (30kW) models)

Table of Contents

Preface i
Table of Contents iii
Chapter 1 Introduction 1-1
1.1 Receiving and Inspection 1-2
1.1.1 Nameplate Information 1-2
1.1.2 Model Explanation 1-2
1.1.3 Series Number Explanation 1-3
1.1.4 Drive Frames and Appearances 1-3
1.1.5 Drive Features 1-5
1.2 Preparation for Installation and Wiring 1-6
1.2.1 Ambient Conditions 1-6
1.2.2 Remove Front Cover. 1-7
1.2.3 Lifting 1-8
1.2.4 Flange Mounting 1-9
1.2.5 Cutout Dimensions 1-11
1.3 Dimensions 1-13
Chapter 2 Installation and Wiring 2-1
2.1 Wiring 2-1
2.2 External Wiring 2-6
2.3 Main Circuit 2-7
2.3.1 Main Circuit Connection 2-7
2.3.2 Main Circuit Terminals 2-9
2.4 Control Terminals 2-10
Chapter 3 Operation and Start Up 3-1
3.1 Operation Method 3-1
3.2 Trial Run 3-3
3.3 Auto-tuning Operations 3-4
3.3.1 Flow Chart 3-4
3.3.2 Explanations for the Auto-tuning Steps 3-5
3.3.2.1 Step 1 3-5
3.3.2.2 Step 2 3-7
3.3.2.3 Step 3 3-9
3.3.2.4 Step 4 3-11
3.3.2.5 Step 5 3-13
3.3.2.6 Step 6 3-13
Chapter 4 Parameters 4-1
4.1 Summary of Parameter Settings 4-2
4.2 Description of Parameter Settings 4-20
Chapter 5 Troubleshooting 5-1
5.1 Over Current (OC) 5-1
5.2 Ground Fault 5-2
5.3 Over Voltage (OV) 5-2
5.4 Low Voltage (Lv) 5-3
5.5 Over Heat (OH) 5-4
5.6 Overload 5-4
5.7 Display of KPVL-CC01 is Abnormal 5-5
5.8 Phase Loss (PHL) 5-5
5.9 Motor cannot Run 5-6
5.10 Motor Speed cannot be Changed 5-7
5.11 Motor Stalls during Acceleration 5-8
5.12 The Motor does not Run as Expected 5-8
5.13 Electromagnetic/Induction Noise 5-9
5.14 Environmental Condition 5-9
5.15 Affecting Other Machines 5-10
Chapter 6 Fault Code Information and Maintenance. 6-1
6.1 Fault Code Information 6-1
6.1.1 Common Problems and Solutions 6-2
6.1.2 Reset 6-9
6.2 Maintenance and Inspections 6-11
Appendix A Specifications A-1
Appendix B Accessories B-1
B. 1 All Brake Resistors \& Brake Units Used in AC Motor Drives B-2
B.1.1 Dimensions and Weights for Brake Resistors B-4
B.1.2 Specifications for Brake Unit B-6
B.1.3 Dimensions for Brake Unit B-7
B. 2 Non-fuse Circuit Breaker Chart B-9
B. 3 Fuse Specification Chart B-9
B. 4 AC Reactor B-11
B.4.1 AC Input Reactor Recommended Value B-11
B.4.2 AC Output Reactor Recommended Value B-11
B.4.3 Applications for AC Reactor B-12
B. 5 Zero Phase Reactor (RF220X00A) B-15
B. 6 DC Choke Recommended Values B-16
B. 7 Digital Keypad KPVL-CC01 B-17
B.7.1 Description of the Digital Keypad KPVL-CC01 B-17
B.7.2 How to Operate the Digital Keypad KPVL-CC01 B-19
B.7.3 Dimension of the Digital Keypad B-21
B.7.4 Recommended Position the Rubber Magnet of the Digital Keypad B-21
B. 8 PG Card (for Encoder) B-22
B.8.1 EMVL-PGABL B-22
B.8.2 EMVL-PGABO B-25
B.8.3 EMVL-PGH01 (only for Heidenhain ERN1387) B-28
B.8.4 EMVL-PGS01 B-32
B. 9 AMD-EMI Filter Cross Reference B-36
B.9.1 Dimensions B-38
B. 10 EMVL-IOA01 B-43
B. 11 Safety Relay EMVL-SAF01 B-44
B.11.1 Functions of the Terminals B-44
B.11.2 Wiring of the Safety Relay B-44
Appendix C How to Select the Right AC Motor Drive C-1
C. 1 Capacity Formulas C-2
C. 2 General Precaution C-4
C. 3 How to Choose a Suitable Motor C-5

Chapter 1 Introduction

The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time. Storage conditions are:

CAUTION!

1. Store in a clean and dry location free from direct sunlight or corrosive fumes.
2. Store within an ambient temperature range of $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
3. Store within a relative humidity range of 0% to 90% and non-condensing environment.
4. Store within an air pressure range of 86 kPA to 106 kPA .
5. DO NOT place on the ground directly. It should be stored properly. Moreover, if the surrounding environment is humid, you should put exsiccator in the package.
6. DO NOT store in an area with rapid changes in temperature. It may cause condensation and frost.
7. If the AC motor drive is stored for more than 3 months, the temperature should not be higher than $30^{\circ} \mathrm{C}$. Storage longer than one year is not recommended, it could result in the degradation of the electrolytic capacitors.
8. When the AC motor drive is not used for longer time after installation on building sites or places with humidity and dust, it's best to move the AC motor drive to an environment as stated above.

1.1 Receiving and Inspection

This VFD-VL AC motor drive has gone through rigorous quality control tests at the factory before shipment. After receiving the AC motor drive, please check for the following:

■ Check to make sure that the package includes an AC motor drive, the User Manual/Quick Start and CD.

- Inspect the unit to assure it was not damaged during shipment.
- Make sure that the part number indicated on the nameplate corresponds with the part number of your order.

1.1.1 Nameplate Information

Example for $15 \mathrm{HP} / 11 \mathrm{~kW} 230 \mathrm{~V}$ 3-Phase AC motor drive

1.1.2 Model Explanation

1.1.3 Series Number Explanation

If the nameplate information does not correspond to your purchase order or if there are any problems, please contact your distributor.

1.1.4 Drive Frames and Appearances

Chapter 1 Introduction | $1 / \pi / \sqrt{2}$

40-100HP/30-75kW(Frame E)

Frame	Power range	Models
C	$7.5-15 \mathrm{HP}(5.5-11 \mathrm{~kW})$	VFD055VL23A/43A, VFD075VL23A/43A, VFD110VL23A/43A
D	$20-30 \mathrm{HP}(15-22 \mathrm{~kW})$	VFD150VLL23A/43A, VFD185VL23A/43A, VFD220VL23A/43A
E (E1)	$40-60 \mathrm{hp}(30-45 \mathrm{~kW})$	VFD300VL43A, VFD370VL43A, VFD450V43A
E (E2)	$40-100 \mathrm{hp}(30-75 \mathrm{~kW})$	VFD300VL23A, VFD370VL23A, VFD550VL43A, VFD750VL43A

Please refer to Chapter 1.3 for exact dimensions.

1.1.5 Drive Features

Communication Port

1.2 Preparation for Installation and Wiring

1.2.1 Ambient Conditions

Install the AC motor drive in an environment with the following conditions:

Operation	Air Temperature:	$-10 \sim+45^{\circ} \mathrm{C}\left(14 \sim 113^{\circ} \mathrm{F}\right)$
	Relative Humidity:	<90\%, no condensation allowed
	Atmosphere pressure:	$86 \sim 106 \mathrm{kPa}$
	Installation Site Altitude:	<1000m
	Vibration:	$\begin{aligned} & \text { <20Hz: } 9.80 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G}) \max \\ & 20 \sim 50 \mathrm{~Hz}: 5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}) \max \end{aligned}$
Storage Transportation	Temperature:	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \sim 140^{\circ} \mathrm{F}\right)$
	Relative Humidity:	<90\%, no condensation allowed
	Atmosphere pressure:	$86 \sim 106 \mathrm{kPa}$
	Vibration:	$\begin{aligned} & <20 \mathrm{~Hz}: 9.80 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G}) \max \\ & 20 \sim 50 \mathrm{~Hz}: 5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}) \max \end{aligned}$
Pollution Degree	2: good for a factory type environment.	

Minimum Mounting Clearances

HP	W mm (inch)	\mathbf{H} mm (inch)
$7.5-20 \mathrm{HP}$	$75(3)$	$175(7)$
$25-75 \mathrm{HP}$	$75(3)$	$200(8)$
100 HP	$75(3)$	$250(10)$

CAUTION!

1. Operating, storing or transporting the AC motor drive outside these conditions may cause damage to the AC motor drive.
2. Failure to observe these precautions may void the warranty!
3. Mount the AC motor drive vertically on a flat vertical surface object by screws. Other directions are not allowed.
4. The AC motor drive will generate heat during operation. Allow sufficient space around the unit for heat dissipation.
5. The heat sink temperature may rise to $90^{\circ} \mathrm{C}$ when running. The material on which the AC motor drive is mounted must be noncombustible and be able to withstand this high temperature.
6. When AC motor drive is installed in a confined space (e.g. cabinet), the surrounding temperature must be within $10 \sim 40^{\circ} \mathrm{C}$ with good ventilation. DO NOT install the AC motor drive in a space with bad ventilation.
7. Prevent fiber particles, scraps of paper, saw dust, metal particles, etc. from adhering to the heatsink.
8. When installing multiple AC more drives in the same cabinet, they should be adjacent in a row with enough space in-between. When installing one AC motor drive below another one, use a metal separation between the AC motor drives to prevent mutual heating.

1.2.2 Remove Front Cover

7.5-15HP/5.5-11kW(frame C) \& 20-30HP/15-22kW(frame D)

After removing the screws, please push the front cover to open it. For the open cover direction, please refer to the following picture.

Chapter 1 Introduction | [$/$ TRyl|

40-100HP/30-75kW (frame E)

After removing the screws, please push the front cover to open it. For the open cover direction, please refer to the following picture.

1.2.3 Lifting

Please carry only fully assembled AC motor drives as shown in the following.

For 40-100HP (Frame E)

Step $1 \quad$ Step 2

Step 3

Step 4

1.2.4 Flange Mounting

Step 1: Please take out the 16 screws (8 screws for each top and bottom side of the drive) and remove the fixed plate 1 and fixed plate 2) as shown in the following figures.

Step 2: place the 8 screws back in to secure the fixed plate 1 and fixed plate 2 (as shown in the following figures) with the following torque.
Frame C: $14-17 \mathrm{kgf-cm}$ [12.2-14.8in-lbf]
Frame D: 20-25kgf-cm [17.4-21.7in-lbf]
Frame E: 20-25kgf-cm [17.4-21.7in-lbf]

Step 3: Please notice that it doesn't need to put those 8 screws shown in the following figures back to the drive. Moreover, please make sure that these 2 different fixed plates are put in the correct side as shown in the figures.

1.2.5 Cutout Dimensions

$7.5-15 \mathrm{HP} / 5.5-11 \mathrm{~kW}$ (frame C)

20-30HP/15-22kW (frame D)

1.3 Dimensions

Frame C

\varnothing_{3}

Unit: mm [inch]

Frame	W	W1	H	H1	H2	H3	D	\varnothing	Ø1	Ø2	Ø3
C	$\begin{gathered} 235 \\ {[9.25]} \end{gathered}$	$\begin{gathered} 204 \\ {[8.03]} \end{gathered}$	$\begin{gathered} 350 \\ {[13.78]} \end{gathered}$	$\begin{array}{\|c} 337 \\ {[13.27]} \end{array}$	$\begin{gathered} 320 \\ {[12.60]} \end{gathered}$	-	$\begin{gathered} 136 \\ {[5.35]} \end{gathered}$	$\begin{gathered} 6.5 \\ {[0.26]} \end{gathered}$	-	$\begin{gathered} 34 \\ {[1.34]} \end{gathered}$	$\begin{gathered} 22 \\ {[0.87]} \end{gathered}$

\square NOTE

Frame C: VFD055VL23A/43A, VFD075VL23A/43A, VFD110VL23A/43A

Chapter 1 Introduction | $1 / \pi / 2$

Frame D

Unit: mm [inch]

Frame	W	W1	H	H1	H2	H3	\mathbf{D}	$\boldsymbol{\varnothing}$	$\boldsymbol{\varnothing 1}$	$\boldsymbol{\varnothing} 2$	$\boldsymbol{\varnothing} 3$
\mathbf{D}	255.0	226.0	403.8	384.0	360.0	21.9	168.0	8.5	44	34	22
	$[10.04]$	$[8.90]$	$[15.90]$	$[15.12]$	$[14.17]$	$[0.86]$	$[6.61]$	$[0.33]$	$[1.73]$	$[1.34]$	$[0.87]$

NOTE

Frame D: VFD150VL23A/43A, VFD185VL23A/43A, VFD220VL23A/43A

Frame E

Unit: mm [inch]

Frame	W	W1	H	H1	H2	D	D1	D2	S1	S2	S3
E1	370.0	335.0		589.0	560.0	260.0	132.5	18.0	13.0	13.0	18.0
	$[14.57]$	$[13.19]$		$[23.19]$	$[22.05]$	$[10.24]$	$[5.22]$	$[0.71]$	$[0.51]$	$[0.51]$	$[0.71]$
E2	370.0	335.0	595.0	589.0	560.0	260.0	132.5	18.0	13.0	13.0	18.0
	$[14.57]$	$[13.19]$	$[23.43]$	$[23.19]$	$[22.05]$	$[10.24]$	$[5.22]$	$[0.71]$	$[0.51]$	$[0.51]$	$[0.71]$

NOTE

Frame E1: VFD300VL43A, VFD370VL43A, VFD450VL43A
Frame E2: VFD300VL23A, VFD370VL23A, VFD550VL43A, VFD750VL43A

Chapter 1 Introduction |

This page intentionally left blank

Chapter 2 Installation and Wiring

After removing the front cover (see chapter 1.2.2 for details), check if the power and control terminals are clear. Be sure to observe the following precautions when wiring.

1. Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipment. The voltage and current should lie within the range as indicated on the nameplate.
2. Check the following items after finishing the wiring:
A. Are all connections correct?
B. No loose wires?
C. No short-circuits between terminals or to ground?

DANGER!

1. A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off. To prevent personal injury, please ensure that the power is turned off and wait ten minutes for the capacitors to discharge to safe voltage levels before opening the AC motor drive.
2. All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
3. Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning.
4. Make sure that the power is off before doing any wiring to prevent electric shock.

2.1 Wiring

Users must connect wires according to the circuit diagrams on the following pages. Do not plug a modem or telephone line to the RS-485 communication port or permanent damage may result. Pins $1 \& 2$ are the power supply for the optional copy keypad only and should not be used for RS485 communication.

Figure 2 Wiring/Terminals setting for SINK(NPN) mode and SOURCE(PNP) mode

Figure 3 Apply to 1-phase UPS power supply system
Main power

Specifications for
1-phase UPS and battery
250VDC (for 230V series)
500VDC (for 460V series)
or battery

To input emergency power

Chapter 2 Installation and Wiring | $\mathrm{V} / \boldsymbol{\pi}-\mathrm{V}$ L

Figure 4 Apply to two batteries with main battery voltage is lower than 280 Vdc

CAUTION!

1. The wiring of main circuit and control circuit should be separated to prevent erroneous actions.
2. Please use shield wire for the control wiring and not to expose the peeled-off net in front of the terminal.
3. Please use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.
4. Damaged insulation of wiring may cause personal injury or damage to circuits/equipment if it comes in contact with high voltage.
5. The AC motor drive, motor and wiring may cause interference. To prevent the equipment damage, please take care of the erroneous actions of the surrounding sensors and the equipment.
6. When the AC drive output terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$ are connected to the motor terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$, respectively. To permanently reverse the direction of motor rotation, switch over any of the two motor leads.
7. With long motor cables, high capacitive switching current peaks can cause over-current, high leakage current or lower current readout accuracy. For longer motor cables use an AC output reactor.
8. The AC motor drive, electric welding machine and the greater horsepower motor should be grounded separately.
9. Use ground leads that comply with local regulations and keep them as short as possible.
10. No brake resistor is built in the VFD-VL series, it can install brake resistor for those occasions that use higher load inertia or frequent start/stop. Refer to Appendix B for details.
11. Multiple VFD-VL units can be installed in one location. All the units should be grounded directly to a common ground terminal, as shown in the figure below. Ensure there are no ground loops.

2.2 External Wiring

Items	Explanations
Power	Please follow the specific power supply requirements shown in Appendix A.
Fuse/NFB (Optional)	There may be an inrush current during power up. Please check the chart of Appendix B and select the correct fuse with rated current. Use of an NFB is optional.
Magnetic	Please do not use a Magnetic contactor as the I/O switch of the AC motor drive, as it will reduce the operating life cycle of the AC drive.
(Optional)	Used to improve the input power factor, to reduce harmonics and provide protection from AC line disturbances= (surges, switching spikes, short interruptions, etc.). AC
Input AC	Line Reactor line reactor should be installed when the power supply capacity is 500kVA or more and exceeds 6 times the inverter capacity, or the mains wiring distance \leq 10m.
(Optional)	Zero phase reactors are used to reduce radio noise especially when audio equipment is installed near the inverter. Effective for noise reduction
Zen both the input and output sides.	
Attenuation quality is good for a wide	
range from AM band to 10MHz.	
Appendix B specifies the zero phase	
reactor. (RF220X00A)	

2.3 Main Circuit

2.3.1 Main Circuit Connection

Terminal Symbol	Explanation of Terminal Function
EPS (+, -)	For emergency power or backup power supply
R/L1, S/L2, T/L3	AC line input terminals
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
$+1,+2 / \mathrm{B} 1$	Connections for DC Choke (optional). Please remove jumper when installation. (It is built in DC choke for models 22kW and above)
$+2 / \mathrm{B} 1$, B2	Connections for Brake Resistor (optional)
$\frac{1}{=}$	Earth connection, please comply with local regulations.

Chapter 2 Installation and Wiring | $\mathrm{L} / \mathrm{BN} \mathrm{V} / \mathrm{L}$

Mains power terminals (R/L1, S/L2, T/L3)

- Connect these terminals (R/L1, S/L2, T/L3) via a non-fuse breaker or earth leakage breaker to 3-phase AC power (some models to 1-phase AC power) for circuit protection. It is unnecessary to consider phase-sequence.
- It is recommended to add a magnetic contactor (MC) in the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of AC motor drives. Both ends of the MC should have an R-C surge absorber.
- Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration.
- Please use voltage and current within the regulation shown in Appendix A.

■ When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above, and not less than 0.1 -second operation time to avoid nuisance tripping. For the specific GFCI of the AC motor drive, please select a current sensor with sensitivity of 30 mA or above.

- Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.

■ Do NOT connect 3-phase models to a 1-phase power source.
Output terminals for main circuit (U, V, W)

- When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Please use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
- DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
■ Use well-insulated motor, suitable for inverter operation.

Terminals $[+1,+2]$ for connecting DC reactor, terminals $[+1,+2 / B 1]$ for connecting brake resistor

- To improve power factor and reduce harmonics connect a $D C$ reactor between terminals [$+1,+2 / \mathrm{B} 1]$. Please remove the jumper before connecting the DC reactor.

■ Models above 22kW don't have a built-in brake chopper. Please connect an external optional brake resistor.

■ When not used, please leave the terminals [+2/B1, -] open.
■ Short-circuiting [B2] or [-] to [+2/B1] can damage the AC motor drive.

2.3.2 Main Circuit Terminals

Frame C

Main circuit terminals
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, $\xlongequal{\ominus}+1,+2 / B 1,-, B 2$

Models	Wire	Torque	Wire Type
VFD055VL23A	10-6 AWG.	30kgf-cm (26in-lbf)	Stranded copper only, $75^{\circ} \mathrm{C}$
VFD110VL43A	(5.3-13.3mm ${ }^{2}$)		
VFD055VL43A	2-6 AWG		
VFD075VL43A	$\left(3.3-13.3 \mathrm{~mm}^{2}\right)$		
VFD075VL23A	$\begin{gathered} \text { 8-6 AWG. } \\ \left(8.4-13.3 \mathrm{~mm}^{2}\right) \end{gathered}$		
VFD110VL23A	$\begin{aligned} & 6 \text { AWG. } \\ & \left(13.3 \mathrm{~mm}^{2}\right) \end{aligned}$		

Main circuit terminals
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, $\xlongequal{(})+1,+2,-$

Models	Wire	Torque	Wire Type
VFD150VL43A	8-2 AWG.	$\begin{gathered} 50 \mathrm{Kgf}-\mathrm{cm} \\ (43.4 \mathrm{lbf}-\mathrm{in}) \end{gathered}$	Stranded copper only, $75^{\circ} \mathrm{C}$
VFD185VL43A	(8.4-33.6mm ${ }^{2}$)		
VFD150VL23A	$\begin{gathered} \text { 4-2 AWG. } \\ \left(21.1-33.6 \mathrm{~mm}^{2}\right) \end{gathered}$		
VFD185VL23A	$\begin{gathered} \text { 3-2 AWG. } \\ \left(26.7-33.6 \mathrm{~mm}^{2}\right) \end{gathered}$		
VFD220VL43A	$\begin{gathered} \text { 6-2 AWG } \\ \left(13.3-33.6 \mathrm{~mm}^{2}\right) \end{gathered}$		
VFD220VL23A	$\begin{gathered} \text { 3-2 AWG } \\ \left(26.7-33.6 \mathrm{~mm}^{2}\right) \end{gathered}$		

Chapter 2 Installation and Wiring

Frame E

Main circuit terminals
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, $\xlongequal{\ominus}+1,+2,-$

Models	Wire	Torque	Wire Type
VFD300VL43A	4-2 AWG. (21.2-33.6mm2)	$57 \mathrm{kgf}-\mathrm{cm}$ (49in-lbf)	Stranded copper only, $75^{\circ} \mathrm{C}$
VFD370VL43A			
VFD450VL43A			
VFD300VL23A			
VFD370VL23A		200kgf-cm	
VFD550VL43A		(173in-lbf)	
VFD750VL43A			

2.4 Control Terminals

(1) Sink/NPN Mode

(2) Source Mode
used with internal power $(+24 \mathrm{Vdc})$

Terminal Symbol	Terminal Function	Factory Settings (SINK) ON: Connect to DCM
FWD	Forward-Stop Command	ON: RUN in FWD direction OFF: Stop acc. to Stop Method
REV	Reverse-Stop Command	ON: RUN in REV direction OFF: Stop acc. to Stop Method
MI1	Multi-function Input 1	Refer to Pr.02-01 to Pr.02-08 for programming the Multi-function Inputs.
MI2	Multi-function Input 2	
MI3	Multi-function Input 3	
MI4	Multi-function Input 4	ON : input voltage is 24 Vdc (Max. 30 Vdc), input impedance is $3.75 \mathrm{k} \Omega$ OFF: leakage current tolerance is $10 \mu \mathrm{~A}$.
M15	Multi-function Input 5	
MI6	Multi-function Input 6	MI8: when JP1 is inserted, this function is disabled.
MI7	Multi-function Input 7	
MI8	Multi-function Input 8	
COM	Digital Signal Common	Common for digital inputs and used for SINK mode
+E24V	Digital Signal Common (Source)	+24V 80mA
DCM	Digital Signal Common (Sink)	Common for digital inputs and used for SINK mode
RA	Multi-function Relay Output 1 (N.O.) a	Resistive Load:$\begin{aligned} & \text { 5A(N.O.)/3A(N.C.) } 240 \mathrm{VAC} \\ & 5 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 3 \mathrm{~A}(\mathrm{~N} . \mathrm{C} .) \\ & 24 \mathrm{VDC} \end{aligned}$
RB	Multi-function Relay Output 1 (N.C.) b	
RC	Multi-function Relay Common	$\begin{aligned} & \text { 1.5A(N.O.)/0.5A(N.C.) 240VAC } \\ & 1.5 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 0.5 \mathrm{~A}(\mathrm{~N} . \mathrm{C} .) 24 \mathrm{VDC} \end{aligned}$ To output monitor signal, including in operation, frequency arrival, overload and etc.
MRA	Multi-function Relay Output 2 (N.O.) a	
MRC	Multi-function Relay Common	Refer to Pr.02-11~02-12 for programming
+10V		-10~+10VDC 20 mA (variable resistor 3-5kohm)
-10V		
MCM	Multi-function Output Common (Photocoupler)	Max. 48VDC 50mA

Chapter 2 Installation and Wiring $\mid \sqrt{1 / ァ V}$

Terminal Symbol	Terminal Function	Factory Settings (SINK) ON: Connect to DCM
MO1	Multi-function Output 1 (Photocoupler)	The AC motor drive output every monitor signal, such as operational, frequency attained, overload, etc. by open collector transistor. Refer to Pr. 03.01 multi-function output terminals for details.
MO2	Multi-function Output 2 (Photocoupler)	
ACl	Analog current Input	Impedance: 250Ω Resolution: 12 bits Range: $4 \sim 20 \mathrm{~mA} / 0 \sim 10 \mathrm{~V}=$ $0 \sim$ Max. Output Frequency (Pr.01-00) Set-up: Pr.03-00 \sim Pr.03-02
AUI1/ AUI2	Auxiliary analog voltage input	Impedance: $2 \mathrm{~m} \Omega$ Resolution: 12 bits Range: $-10 \sim+10$ VDC $=$ $0 \sim$ Max. Output Frequency (Pr.01-00) Set-up: Pr. $03-00 \sim$ Pr. $03-02$
ACM	Analog control signal (common)	Common for ACI, AUI1, AUI2

*Control signal wiring size: 18 AWG ($0.75 \mathrm{~mm}^{2}$) with shielded wire.

Analog input terminals (ACI, AUI1, AUI2, ACM)

■ Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.

- If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and ferrite core as indicated in the following diagrams:

wind each wires 3 times or more around the core

Digital inputs (FWD, REV, MI1~MI8, COM)

- When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.

Digital outputs (MO1, MO2, MCM)

■ Make sure to connect the digital outputs to the right polarity, see wiring diagrams.
■ When connecting a relay to the digital outputs, connect a surge absorber or fly-back diode across the coil and check the polarity.

The specification for the control terminals
The Position of External Terminals

Frame	Torque		Wire
C, D, E	$8 \mathrm{kgf-cm}(6.9 \mathrm{in}-\mathrm{lbf})$		$22-14$ AWG $\left(0.3-2.1 \mathrm{~mm}^{2}\right)$
	Terminal: $0 \mathrm{~V} / 24 \mathrm{~V}$	$1.6 \mathrm{kgf-com}(1.4$ in-lbf)	$30-16$ AWG $\left(0.051-1.3 \mathrm{~mm}^{2}\right)$

Chanter 2 Installation and Wiring | [1/アハV|L
 NOTE

Frame C: VFD055VL23A/43A, VFD075VL23A/43A, VFD110VL23A/43A
Frame D: VFD150VL23A/43A, VFD185VL23A/43A, VFD220VL23A/43A
Frame E: VFD300VL23A/43A, VFD370VL23A/43A, VFD450VL43A, VFD550VL43A, VFD750VL43A

Chapter 3 Operation and Start Up

	Make sure that the wiring is correct. In particular, check that the output terminals U/T1, V/T2, W/T3 are NOT connected to power and that the drive is well grounded. - Verify that no other equipment is connected to the AC motor - Do NOT operate the AC motor drive with humid hands. - Verify that there are no short-circuits between terminals and from terminals to ground or mains power. ■ Check for loose terminals, connectors or screws. - Make sure that the front cover is well installed before applying power.
	Please do NOT touch output terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ when power is still applied to L1/R, L2/S, L3/T even when the AC motor drive has stopped. The DC-link capacitors may still be charged to hazardous voltage levels, even if the power has been turned off.

3.1 Operation Method

The factory setting for operation method is set to control terminal. But it is just one of the operation methods. The operation method can be via communication, control terminals settings or optional digital keypad KPVL-CC01. Please choose a suitable method depending on application and operation rule. The operation is usually used as shown in the following table.

Operation Method	Frequency Source	Operation Command Source
Operate from communication	Please refer to the communication address 2000 H and 2119 H settings in the communication address definition.	
Control Terminals- Operate from external signal	(*1) When JP1 on the control board is inserted, M18 is disabled.	
KPVL-CC01 keypad (Optional)		
	UP/DOWN key	RUN, STOP/RESET key

3.2 Trial Run

The factory setting of operation source is from external terminals.

1. Please connect a switch for both external terminals FWD-COM and REV-COM.
2. Please connect a potentiometer among AUI1/AUI2, $+10 \mathrm{~V},-10 \mathrm{~V}$ and ACM or apply power -10 $\sim+10 \mathrm{Vdc}$ to AUI1/AUI2-ACM.
3. Setting the potentiometer or $-10 \sim+10 \mathrm{Vdc}$ power to less than 1 V .
4. Make sure that all external terminal wirings are finished before applying power. After applying power, verify that LED "READY" is ON.
5. Setting FWD-COM=ON for forward running. And if you want to change to reverse running direction, you should set REV-COM=ON. And if you want to decelerate to stop, please set FWD/REV-COM=OFF.
6. Check following items:

- Check if the motor direction of rotation is correct.
- Check if the motor runs steadily without abnormal noise and vibration.
- Check if acceleration and deceleration are smooth.

If the results of trial run are normal, please start the formal run.

3.3 Auto-tuning Operations

3.3.1 Flow Chart

Step 1 Basic parameter settings Step 2 Motor tuning

3.3.2 Explanations for the Auto-tuning Steps

3.3.2.1 Step 1

Basic parameters settings

- Make sure that Pr.00-00 (identity code of the AC motor drive) corresponds with the nameplate indicated on the AC motor drive.

■ Make sure that all parameters are reset to factory setting (Pr.00-02 is set to 9 or 10).

Pr.00-02	0: No function
Parameter Reset	1: Read only
	8: Keypad lock
	9: All parameters are reset to factory settings $(50 \mathrm{~Hz}$,
	$220 \mathrm{~V} / 380 \mathrm{~V})$
	10: All parameters are reset to factory settings $(60 \mathrm{~Hz}$,
	220V/440V)

■ Source of the Master Frequency Command: users can set by themselves (Pr.00-14)

Pr.00-14	1: RS-485 serial communication or digital keypad
Source of the	(KPVL-CC01)
Master Frequency 2: External analog input (Pr. 03-00) Command 3: Digital terminals input	

■ Source of the Operation Command: users can set by themselves (Pr.00-15)

Pr.00-15	1: External terminals Source of the Operation Command
2: RS-485 serial communication or digital keypad (KPVL-CC01)	

MI/MO external terminals settings:
Refer to Pr.02-01~02-08 for setting the external input terminals MI1~MI8.
NOTE: The factory setting of Pr.02-08 is 40 (Enable drive function). Please disable this function if you don't need to use this function.

Settings of Pr.02- 01~02-08	0: no function
	1: multi-step speed command 1
	2: multi-step speed command 2
	3: multi-step speed command 3
	4: multi-step speed command 4
	5: Reset
	6: JOG command
	7: acceleration/deceleration speed inhibit
	8: the 1st, 2nd acceleration/deceleration time selection
	9: the 3rd, 4th acceleration/deceleration time selection
	10: EF input (07-28)
	11: Reserved
	12: Stop output
	13: Disable auto accel./decel. function

Settings of Pr.02-01~02-08

14: Reserved
15: operation speed command form AUI1
16: operation speed command form ACI
17: operation speed command form AUI2
18: Emergency Stop (07-28)
19-23: Reserved
24: FWD JOG command
25: REV JOG command
26: Reserved
27: ASR1/ASR2 selection
28: Emergency stop (EF1) (Motor coasts to stop)
29-30: Reserved
31: High torque bias (by Pr.07-21)
32: Middle torque bias (by Pr.07-22)
33: Low torque bias (by Pr.07-23)
34-37: Reserved
38: Disable write EEPROM function
39: Torque command direction
40: Enable drive function
41: Reserved
42: Mechanical brake
43: EPS function

Refer to Pr.02-13~02-22 for setting external output terminals MO1~MO10.

Settings of Pr.02-	0: No function
13~02-22	1: Operation indication
	2: Operation speed attained
	3: Desired frequency attained 1 (Pr.02-25)
	4: Desired frequency attained 2 (Pr.02-27)
	5: Zero speed (frequency command)
	6: Zero speed with stop (frequency command)
	7: Over torque (OT1) (Pr.06-05~06-07)
	8: Over torque (OT2) (Pr.06-08~06-10)
	9: Drive ready
	10: User-defined Low-voltage Detection (LV)
	11: Malfunction indication
	12: Mechanical brake release (Pr.02-29, Pr.02-30)
	13: Overheat (Pr.06-14)
	14: Brake chopper signal
	15: Motor-controlled magnetic contactor output
	16: Slip error (oSL)
	17-18: Reserved

Settings of Pr.02- 13~02-22	19: Brake chopper output error
	20: Warning output
	21: Over voltage warning
	22: Over-current stall prevention warning
	23: Over-voltage stall prevention warning
	24: Operation mode indication (Pr.00-15 $\neq 0$)
	25: Forward command
	26: Reverse command
	27: Output when current >= Pr.02-33
	28: Output when current <Pr.02-33
	29: Output when frequency >= Pr.02-34
	30: Output when frequency <Pr.02-34
	31-32: Reserved
	33: Zero speed (actual output frequency)
	34: Zero speed with Stop (actual output frequency)
	35: Error output selection 1 (Pr.06-22)
	36: Error output selection 2 (Pr.06-23)
	37: Error output selection 3 (Pr.06-24)
	38: Error output selection 4 (Pr.06-25)
	39: Reserved
	40: Speed attained (including zero speed)
	41: Reserved

3.3.2.2 Step 2

Motor tuning

- Setting the parameters according to the motor type (PM or IM)

IM motor

■ Inputting the nameplate information on the motor into Pr.01-00~01-02 and Pr.05-01~05-
04

Pr. $01-00$ Maximum Output Frequency	$10.00 \sim 120.00 \mathrm{~Hz}$

Pr.01-01 1st Output Frequency Setting 1 (base frequency/motor rated frequency)	$0.00 \sim 120.00 \mathrm{~Hz}$

Pr.01-02 1st Output Voltage Setting 1 (base voltage/motor rated	$230 \mathrm{~V}: 0.1 \mathrm{~V} \sim 255.0 \mathrm{~V}$
(bol	

Chapter 3 Operation and Start Up| [/ت>V/L

■ Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1) and setting Pr.05-00=2

Pr.05-00 Motor Auto tuning	0: No function 1: Rolling test (Rs, Rr, Lm, Lx, no-load current) 2: Static Test

NOTE 1: It doesn't need to release the brake in this auto tuning operation. Please make sure that the electromagnetic valve is ON when it is used between the AC motor drive and motor. When Pr.05-00 is set to 2, no-load current of motor must be entered into Pr.05-05. The warning message "Auto tuning" will be displayed on the digital keypad during tuning until it is finished. Then, the measure result will be saved into Pr.05-06~Pr.05-09.
NOTE 2: It needs to finish motor auto tuning before measuring the angle between magnetic field and PG origin.

PM motor

■ Control method: Please set Pr.00-09 to 8.

Pr.00-09	0: V/f Control
Control Method	1: V/f Control + Encoder (VFPG)
	2: Sensorless vector control (SVC)
	3: FOC vector control + Encoder (FOCPG)
	4: Torque control + Encoder (TQCPG)
	8: FOC PM control (FOCPM)

■ Inputting the nameplate information on the motor into Pr.01-00~01-02 and Pr.08-01~0804

Pr.01-00 Maximum Output Frequency	$10.00 \sim 120.00 \mathrm{~Hz}$

Pr.01-01 1st Output Frequency Setting 1 (base frequency/motor rated frequency)	$0.00 \sim 120.00 \mathrm{~Hz}$

Pr.01-02 1st Output Voltage Setting 1 (base voltage/motor rated voltage)	230V: $0.1 \mathrm{~V} \sim 255.0 \mathrm{~V}$

■ Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1) and setting Pr.08-00=2

Pr.08-00	$0:$ No function
Motor Auto tuning	1: Only for the unloaded motor, auto measure the
	Angle between magnetic field and PG origin (08-09)
	2: For PM motor parameters
	3: Auto measure the Angle between magnetic field and
	PG origin (08-09)

NOTE 1：It doesn＇t need to release the brake in this auto tuning operation．Please make sure that the electromagnetic valve is ON when it is used between the AC motor drive and motor．The warning message＂Auto tuning＂will be displayed on the digital keypad during tuning until it is finished．Then，the measure result will be saved into Pr．08－05 and Pr．08－07． （Pr．08－05 is Rs of Motor and Pr．08－07 is Lq of Motor）
NOTE 2：The auto tuning of the IM motor can also be dynamic measure．
NOTE 3：It doesn＇t need to release the brake for the static measure．

3．3．2．3 Step 3

Encoder settings

－Selection of speed feedback cards
Please refer to appendix B． 8 for details．Delta provides 4 PG cards for user to select by their application，including EMVL－PGABL，EMVL－PGABO，EMVL－PGH01 and EMVL－ PGS01．

PM motor

It can execute＂RUN＂by keypad or digital terminals：
■ Using digital keypad：setting Pr．08－00＝1 and press RUN to execute＂auto measure the angle between magnetic field and PG origin＂．

Please notice that if the electromagnetic valve and brake is not controlled by the AC motor drive，please release it by manual．

■ Using external terminals：Pr．00－14＝3，Pr．00－15＝1（refer to step 1）．Please use ＂inspection＂function to execute＂auto measure the angle between magnetic field and PG origin＂．

For the IM motor，it doesn＇t need to detect the position of the electromagnetic pole，this function（auto measure the Angle between magnetic field and PG origin）doesn＇t have to be executed．

Measure the angle between magnetic field and PG origin：Pr．08－00＝1 or 3

Pr．08－00	$0:$ No function
Motor Auto tuning	1：Only for the unloaded motor，auto measure
	the Angle between magnetic field and PG origin
	$(08-09)$
	2：For PM motor parameters
	3：Auto measure the Angle between magnetic field and PG origin（08－09）

NOTE 1：It is recommended to set Pr． $08-00$ to 1 （unloaded motor）for the accurate calculation．If it needs to execute this function with loaded motor，please balance the carriage before execution．
NOTE 2：if it doesn＇t allow balancing the carriage in the measured environment，it can set Pr．08－00＝3 for executing this function．It can execute this function with loaded motor by setting Pr． $08-00=3$ ．It will have a difference of $15 \sim 30^{\circ}$ by the different encoder type．
NOTE3：It will display the warning message＂Auto tuning＂on the digital keypad during measuring until the measure is finished．Then，the result will be saved into Pr．08－09．

Chapter 3 Operation and Start Up| $1 / \pi / 1 /$

NOTE 4: It will display "Auto Tuning Err" on the keypad when stopping by the fault of the AC motor drive or human factor to show the failed detection. At this moment, please check the connections of the wirings of the AC motor drives. If it displays "PG Fbk Error" on the digital keypad, please change the setting of Pr.10-02 (if it is set to 1 , please change it to 2). If it displays "PG Fbk Loss" on the digital keypad, please check the feedback of Z-phase pulse.

Pr.10-00	0: No function
PG signal type	1: ABZ
	2: ABZ+Hall
	3: SIN/COS+Sinusoidal
	4: SIN/COS+Endat
	5: SIN/COS
	6: SIN/COS + Hiperface

■ Encoder settings: Pr.10-01~Pr.10-02
Detection for the magnetic pole position of motor
The detection method will be different by the setting of Pr.10-00 PG Signal Type.
The detection methods: (refer to Pr.10-00)

1. Setting 1 or 5 : The AC motor drive will output short circuit to detect the position of the electromagnetic pole. At this moment, the motor will generate a little noise.
2. Setting 2: The AC motor drive will detect the position of the electromagnetic pole by the UVW signal of PG.
3. Setting 3: The AC motor drive will detect the position of the electromagnetic pole by the sine signal of PG.
4. Setting 4: The AC motor drive will detect the position of the electromagnetic pole by the communication signal of PG.

Reference table for tuning

Setting of PG signal type	PG signal type	Applicable PG card	Pr.08-00=1	Pr.08-00=3
$10-00=1$	A, B, Z	EMVL-PGABO/ABL	Motor will run	Motor will run
$10-00=2$	A, B, Z+U, V, W	EMVL-PGABL	Motor will run	Motor won't run
$10-00=3$	SIN/COS+ Sinusoidal	EMVL-PGH01/02	Motor will run	Motor will run
$10-00=4$	SIN/COS+Endat	EMVL-PGS01	Motor will run	Motor won't run
$10-00=5$	SIN/COS	EMVL-PGH01/02	Motor will run	Motor will run
$10-00=6$	SIN/COS + Hiperface	EMVL-PGS01	Motor will run	Motor won't run

[^0]1~25000

Pr.10-02	0: Disable
Encoder Input Type Setting	1: Phase A leads in a forward run command and
	phase B leads in a reverse run command
	2: Phase B leads in a forward run command and
	phase A leads in a reverse run command
	3: Phase A is a pulse input and phase B is a
	direction input. (low input=reverse direction, high
	input=forward direction)
	4: Phase A is a pulse input and phase B is a
	direction input. (low input=forward direction, high
	input=reverse direction)
	5: Single-phase input

3.3.2.4 Step 4

Multi-step speed settings
■ Please confirm the total speed steps (high speed, middle speed, low speed, creep, inspection and level auto-learning)

- Please make sure that the setting of step speeds and the action of the corresponding terminals of multi-function input commands are correct.

■ Setting multi-step speeds in Pr.04-00 to Pr.04-15

	Zero Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	1st Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	2nd Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
Settings of Pr.04-00 to Pr.04-15	3rd Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	4th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	5th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	6th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	7th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	8th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	9th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	10th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	11th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	12th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	13th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	14th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$
	15th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$

NOTE: It is recommended to set the max. operating frequency to the half of max. operating frequency before confirming the setting of each step speed and the action of the corresponding terminals of multi-function input commands.

Chapter 3 Operation and Start Up|[TアMVLI

■ Setting the acceleration/deceleration with Pr.01-23 and the setting 08 (the 1st, 2nd acceleration/deceleration time selection) and 09 (the 3rd, 4th acceleration/deceleration time selection) of multi-function input command Pr.02-01~02-08.

■ Settings of acceleration/deceleration time: Pr.01-12~Pr.01-19

Settings of Pr.01-12 to Pr.01-19	Accel Time 1	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 1	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 2	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 2	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 3	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 3	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 4	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 4	$0.00 \sim 600.00 \mathrm{sec}$

NOTE: it is recommended to set the acceleration/deceleration time to the small value in the trial run and execute smooth test after all the actions are correct.
■ Settings of S curve: Pr.01-24~Pr.01-30

Settings of Pr.01-24 to Pr.01-30	S-curve for Acceleration Departure Time S1	$0.00 \sim 25.00 \mathrm{sec}$
	S-curve for Acceleration Arrival Time S2	$0.00 \sim 25.00 \mathrm{sec}$
	S-curve for Deceleration Departure Time S3	$0.00 \sim 25.00 \mathrm{sec}$
	S-curve for Deceleration Arrival Time S4	$0.00 \sim 25.00 \mathrm{sec}$
	Mode Selection when Frequency < Fmin	0: Output waiting 1: Zero-speed operation 2: Fmin (4th output frequency setting)
	Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 120.00 \mathrm{~Hz}$
	S-curve for Deceleration Arrival Time S5	$0.00 \sim 25.00 \mathrm{sec}$

NOTE: it is recommended to set the S curve time to 0 in trial run and execute smooth test after all the actions are correct.

3．3．2．5 Step 5

Trial run
This step is used to trial run after finishing the settings of Step 1 to Step 4 to check if it runs normally after executing the inspection with the loaded motor．At the same time，please also check if the operations of multi－function output terminals is normal，such as the action of the brake release and electromagnetic valve correspond to the host controller．
It needs to check the switch between each step speed，current value，the noise in the carriage and noise source during operation．

3．3．2．6 Step 6

Elevator tuning
1．Setting Pr．11－00 to bit $0=1$

Pr．11－00	Bit 0＝0：disable
System control	Bit 0＝1：ASR Auto tuning，PDFF enable
	Bit 7＝1：When position control is enabled，it doesn＇t need to
	set Pr．07－02（DC Brake Current Level）
	Bit 15＝0：when power is applied，it will detect the position of magnetic field again Bit 15＝1：when power is applied，it will start from the magnetic field position of previous power failure

2．Smooth test for general operation
－Adjust the setting of Pr．11－05

Pr．11－05 Inertial Ratio	$1 \sim 300 \%$

■ Adjust the settings of Pr．11－06 to Pr．11－08

Settings of Pr．11－ 06 to Pr．11－08	Zero－speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$
	Low－speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$
	High－speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$

3．Start－up adjustment（only for PM motor）
■ Control by the zero－speed position
Setting Pr．11－00，10－19，10－22，10－23，02－29 and 10－24

Pr．11－00 System control	Bit $0=0$ ：disable Bit $0=1:$ ASR Auto tuning，PDFF enable Bit $7=1:$ When position control is enabled，it doesn＇t need to set Pr．07－02（DC Brake Current Level） Bit 15＝0：when power is applied，it will detect the position of magnetic field again Bit 15＝1：when power is applied，it will start from the magnetic field position of previous power failure

Pr.10-19 Zero Speed Gain (P)	$0 \sim 655.00 \%$

NOTE: refer to the explanations in Pr.02-32

Pr.10-22 Operation Time of Zero Speed	$0.000 \sim 65.535 \mathrm{sec}$

Pr.10-23 Filter Time of Zero Speed	$0.000 \sim 65.535 \mathrm{sec}$

Pr.10-24	0: after the brake release set in Pr.02-29 Time for Zero Speed Execution
1: after the brake signal input (Pr.02-01~02-08 is set to 42)	

Pr.02-29	$0.000 \sim 65.000$ Sec
Brake Release Delay	
Time when Elevator	
Starts	

NOTE: When Pr.10-24=0, the zero speed control needs to be used with Pr.02-29. (refer to the explanations in Pr.02-32)

- Function of the preload input

Please connect the signal of the preload signal to the external terminal of the AC motor drive (AUI1) and setting Pr.03-00=11, 07-19=1, 03-03, 03-06 and 03-09.

Pr.03-00	0: No function
Analog Input 1 (AUI1)	1: Frequency command (torque limit under TQR control
mode)	
	2: Torque command (torque limit under speed mode)
	3: Torque compensation command
	4-5: Reserved
	6: P.T.C. thermistor input value
	7: Positive torque limit
	8: Negative torque limit
	9: Regenerative torque limit
	10: Positive/negative torque limit
	11: Preload Input

Pr.07-19	0: Disable
Source of Torque	1: Analog input (Pr.03-00)
Offset	2: Torque offset setting (Pr.07-20)
	3: Control by external terminal (by Pr.07-21 to Pr.07-23)

Pr. $03-03$ Analog Input Bias 1 (AUI1)	$-100.0 \sim 100.0 \%$

Pr.03-06	0: Zero bias
Positive/negative Bias	1: Lower than bias=bias
Mode (AUI1)	2: Greater than bias=bias
	3: The absolute value of the bias voltage while serving as the center
	4: Serve bias as the center

Pr.03-09 Analog Input Gain 1 (AUI1)	$-500.0 \sim 500.0 \%$

NOTE: Pr.03-03, 03-06 and 03-09 are used to adjust the analog input signal.
07-19: Source of torque offset
03-00~02: Analog input selections (AUI1/ACI/AUI2)
03-03~05: Analog input bias (AUI1/ACI/AUI2)
03-06~08: AUI1/ACI/AUI2 bias mode

4. Setting of drive stop

Adjusting Pr.01-29, Pr.01-30 and Pr.11-06

Chapter 3 Operation and Start Up | [/ $/ \boldsymbol{P}-\mathrm{V} / \mathrm{L}$

Pr.01-29	$0.00 \sim 120.00 \mathrm{~Hz}$
Switch Frequency for	
S3/S4 Changes to S5	

Pr.01-30	$0.00 \sim 25.00 \mathrm{sec}$
S-curve for	
Deceleration Arrival	
Time S5	

Pr. 11-06 Zero-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$

Chapter 4 Parameters

The VFD-VL parameters are divided into 14 groups by property for easy setting. In most applications, the user can finish all parameter settings before start-up without the need for readjustment during operation.

The 14 groups are as follows:

Group 0: System Parameters
Group 1: Basic Parameters
Group 2: Digital Input/Output Parameters
Group 3: Analog Input/Output Parameters
Group 4: Multi-Step Speed Parameters
Group 5: IM Motor Parameters
Group 6: Protection Parameters
Group 7: Special Parameters
Group 8: PM Motor Parameters
Group 9: Communication Parameters
Group 10: Speed Feedback Control Parameters
Group 11: Advanced Parameters
Group 12: User-defined Parameters
Group 13: View User-defined Parameters

Chapter 4 Parameters | $1 / \pi>|l|$

4.1 Summary of Parameter Settings

N : The parameter can be set during operation.
Group 0 System Parameters

Pr.	Explanation	Settings	Factory Setting	$\stackrel{4}{ }$	$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \stackrel{0}{4} \end{aligned}$	$\begin{gathered} 0 \\ \omega \end{gathered}$	O	O	등
00-00	Identity Code of the AC motor drive	Read-only	\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
00-01	Rated Current Display of the AC motor drive	Read-only	\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
00-02	Parameter Reset	0: No function 1: Read only 8: Keypad lock 9: All parameters are reset to factory settings $(50 \mathrm{~Hz}$, 220V/380V) 10: All parameters are reset to factory settings $(60 \mathrm{~Hz}$, $220 \mathrm{~V} / 440 \mathrm{~V}$)	0	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
N00-03	Start-up Display Selection	0 : Display the frequency command value (LED F) 1: Display the actual output frequency (LED H) 2: DC BUS voltage 3: Display the output current (A) 4: Output voltage 5: Multifunction display, see Pr.00-04	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N00-04	Content of Multi Function Display	0: Display output current (A) 1: Reserved 2: Display output frequency (H) 3: Display DC-BUS voltage (U) 4: Display output voltage (E) 5: Output power factor angle (n) 6: Display output power kW(P) 7: Display actual motor speed in rpm(r) 8: Display estimate output torque $\mathrm{kg}-\mathrm{m}$ (t) 9: Display PG position (G) 10: Reserved 11: Display AUI1 \% (1.) 12: Display ACI \% (2.) 13: Display AUI2 \% (3.) 14: Display the temperature of heat sink (${ }^{\circ} \mathrm{C}$) 15: Display the temperature of IGBT ${ }^{\circ} \mathrm{C}$ (T.) 16: The status of digital input ON/OFF (i) 17: The status of digital output ON/OFF (o) 18: Multi-step speed (S) 19: The corresponding CPU pin status of digital input (i.) 20: The corresponding CPU pin status of digital output (o.) 21-23: Reserved 24: Output AC voltage when malfunction (8) 25: Output DC voltage when malfunction (8.) 26: Output frequency when malfunction (h) 27: Output current when malfunction (4) 28: Output frequency command when malfunction (h.)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N00-05	User-Defined Coefficient K	Digit 4: decimal point number (0 to 3) Digit 0-3: 40 to 9999	0	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
00-06	Software Version	Read-only	\#.\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N00-07	Password Input	1 to 9998 and 10000 to 65535 0 to 2: times of wrong password	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
N00-08	Password Set	1 to 9998 and 10000 to 65535 0: No password set or successful input in Pr.00-07 1: Password has been set	0	\bigcirc	\bigcirc	\bigcirc	-	O	\bigcirc
00-09	Control Method	0: V/f Control 1: V/f Control + Encoder (VFPG) 2: Sensorless vector control (SVC) 3: FOC vector control + Encoder (FOCPG) 4: Torque control + Encoder (TQCPG) 8: FOC PM control (FOCPM)	0	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
00-10	Reserved								
00-11	Reserved								
N00-12	Carrier Frequency	2~15KHz	12	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc

Pr.	Explanation	Settings	Factory Setting	"	$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{1}{>} \end{aligned}$	心	O	O	릉
N00-13	Auto Voltage Regulation (AVR) Function	0: Enable AVR 1: Disable AVR 2: Disable AVR when deceleration stop	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N00-14	Source of the Master Frequency Command	1: RS-485 serial communication or digital keypad (KPVL-CC01) 2: External analog input (Pr. 03-00) 3: Digital terminals input (Pr. 04-00~04-15)	1	\bigcirc	O	\bigcirc	\bigcirc		\bigcirc
N00-15	Source of the Operation Command	1: External terminals 2: $\mathrm{RS}-485$ serial communication or digital keypad (KPVL-CC01)	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Chapter 4 Parameters | [$/ \sim 3 / 4$

Group 1 Basic Parameters

Pr.	Explanation	Settings	Factory Setting	$\stackrel{4}{>}$	-	¢	¢	¢	든
01-00	Maximum Output Frequency	$10.00 \sim 120.00 \mathrm{~Hz}$	$\begin{aligned} & \hline 60.00 / \\ & 50.00 \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
01-01	1st Output Frequency Setting 1	$0.00 \sim 120.00 \mathrm{~Hz}$	$\begin{aligned} & \hline 60.00 / \\ & 50.00 \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
01-02	1st Output Voltage Setting 1	$\begin{aligned} & 230 \mathrm{~V}: 0.1 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.1 \mathrm{~V} \sim 510.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 220.0 \\ & 440.0 \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
01-03	2nd Output Frequency Setting 1	$0.00 \sim 120.00 \mathrm{~Hz}$	0.50	\bigcirc	\bigcirc				
N 01-04	```2nd Output Voltage Setting 1```	$\begin{aligned} & 230 \mathrm{~V}: 0.1 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.1 \mathrm{~V} \sim 510.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \\ \hline \end{gathered}$	\bigcirc	\bigcirc				
01-05	3rd Output Frequency Setting 1	0.00~120.00Hz	0.50	\bigcirc	\bigcirc				
N01-06	3rd Output Voltage Setting 1	$\begin{aligned} & 230 \mathrm{~V}: 0.1 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.1 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	\bigcirc	\bigcirc				
01-07	4th Output Frequency Setting 1	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
N01-08	4th Output Voltage Setting 1	$\begin{aligned} & 230 \mathrm{~V}: 0.1 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.1 \mathrm{~V} \sim 510.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$	\bigcirc	\bigcirc				
01-09	Start Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.50	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
N 01-10	Output Frequency Upper Limit	$0.00 \sim 120.00 \mathrm{~Hz}$	120.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-11	Output Frequency Lower Limit	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-12	Accel Time 1	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-13	Decel Time 1	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-14	Accel Time 2	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-15	Decel Time 2	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-16	Accel Time 3	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-17	Decel Time 3	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-18	Accel Time 4	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-19	Decel Time 4	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-20	JOG Acceleration Time	0.00~600.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-21	JOG Deceleration Time	0.00~600.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-22	JOG Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	6.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N01-23	Switch Frequency between 1st/4th Accel/decel	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-24	S-curve for Acceleration Departure Time S1	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-25	S-curve for Acceleration Arrival Time S2	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N01-26	S-curve for Deceleration Departure Time S3	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-27	S-curve for Deceleration Arrival Time S4	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
01-28	Mode Selection when Frequency < Fmin	0: Output waiting 1: Zero-speed operation 2: Fmin (4th output frequency setting)	0	\bigcirc	\bigcirc	\bigcirc			
N 01-29	Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-30	S-curve for Deceleration Arrival Time S5	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 01-31	Deceleration Time when Operating without RUN Command	0.00~60.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

Group 2 Digital Input/Output Parameters

Chapter 4 Parameters $|$| $1 / \pi-1 / 2$ |
| :--- | :--- |

Pr.	Explanation	Settings	Factory Setting	$\stackrel{4}{>}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 1 \end{aligned}$	む	O	O	든
N 02-16	Multi-function Output 6(MO4)	14: Brake chopper signal	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		15: Motor-controlled magnetic contactor output		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		16: Slip error (oSL)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 02-17	Multi-function Output 7(MO5)	17: Malfunction indication 1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		18: Reserved							
		19: Brake chopper output error		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		20: Warning output		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		21: Over voltage warning		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-18	Multi-function Output 8 (MO6)	22: Over-current stall prevention warning	0	\bigcirc	\bigcirc	\bigcirc			
		23: Over-voltage stall prevention warning		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N02-19	$\begin{aligned} & \text { Multi-function Output } 9 \\ & \text { (MO7) } \end{aligned}$	24: Operation mode indication (Pr.00-15 $=0$)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		25: Forward command		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-20	Multi-function Output 10 (MO8)	26: Reverse command	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		27: Output when current > P Pr.02-33		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-21	Multi-function Output 11 (MO9)	28: Output when current < Pr.02-33	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		29: Output when frequency >= Pr.02-34		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-22	Multi-function Output 12(MO10)	30: Output when frequency < Pr.02-34	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		31-32: Reserved							
		33: Zero speed (actual output frequency)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		34: Zero speed with Stop (actual output frequency)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		35: Fault output option 1 (Pr.06-22)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		36: Fault output option 2 (Pr.06-23)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		37: Fault output option 3 (Pr.06-24)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		38: Fault output option 4 (Pr.06-25)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		39: Reserved							
		40: Speed attained (including zero speed)		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		41: Reserved							
N 02-23	Multi-output Direction	0~65535	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
02-24	Serial Start Signal Selection	0: by FWD/REV 1: by Enable	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 02-25	Desired Frequency Attained 1	$0.00 \sim 120.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 02-26	The Width of the Desired Frequency Attained 1	$0.00 \sim 120.00 \mathrm{~Hz}$	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 02-27	$\begin{array}{\|l\|l\|l} \hline \text { Desired Frequency Attained } \\ 2 \end{array}$	$0.00 \sim 120.00 \mathrm{~Hz}$	$\begin{aligned} & \hline 60.00 / \\ & 50.00 \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 02-28	The Width of the Desired Frequency Attained 2	$0.00 \sim 120.00 \mathrm{~Hz}$	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-29	Brake Release Delay Time when Elevator Starts	0.000~65.000 Sec	0.250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
02-30	Brake Engage Delay Time when Elevator Stops	0.000~65.000 Sec	0.250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-31	Turn On Delay of Magnetic Contactor between Drive and Motor	0.000~65.000 Sec	0.200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-32	Turn Off Delay of Magnetic Contactor between Drive and Motor	0.000~65.000 Sec	0.200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-33	Output Current Level Setting for External Terminals	0~100\%	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-34	Output Boundary for External Terminals	$0.00 \sim+-120.00 \mathrm{~Hz}$ (it is motor speed when using with PG)	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 02-35	Detection Time of Mechanical Brake	0.00~10.00 Sec	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Group 3 Analog Input/Output Parameters

Chapter 4 Parameters | $\mathrm{V} / \mathrm{TO} / \mathrm{V}$]

Pr.	Explanation	Settings	Factory Setting	"	$\begin{array}{\|l} \text { O} \\ \stackrel{0}{10} \\ \hline \end{array}$	芯	응		
N03-19	Analog Output Value in REV Direction 1	0: Absolute value in REV direction 1: Output OV in REV direction 2: Enable output voltage in REV direction	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N03-20	Analog Output Selection 2	0: Output frequency (Hz) 1: Frequency command (Hz) 2: Motor speed (RPM) 3: Output current (rms) 4: Output voltage 5: DC Bus Voltage 6: Power factor 7: Power 8: Output torque 9: AVI 10: ACI 11: AUI 12: q-axis current 13: q-axis feedback value 14: d-axis current 15: d-axis feedback value 16: q-axis voltage 17: d-axis voltage 18: Torque command 19-20: Reserved	0	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N03-21	Analog Output Gain 2	0~200.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	O	-	\bigcirc
N03-22	Analog Output Value in REV Direction 2	0: Absolute value in REV direction 1: Output 0 V in REV direction 2: Enable output voltage in REV direction	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Group 4 Multi-Step Speed Parameters

Pr.	Explanation	Settings	Factory Setting	$\stackrel{4}{>}$	咎	む	응	O	들
N 04-00	Zero Step Speed Frequency	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
M 04-01	1st Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
M 04-02	2nd Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N04-03	3rd Step Speed Frequency	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N04-04	4th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 04-05	5th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N04-06	6th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
M 04-07	7th Step Speed Frequency	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 04-08	8th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 04-09	9th Step Speed Frequency	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 04-10	10th Step Speed Frequency	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N04-11	11th Step Speed Frequency	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N04-12	12th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N04-13	13th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 04-14	14th Step Speed Frequency	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 04-15	15th Step Speed Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

Chapter 4 Parameters | [$\mathrm{V} \sim \mathrm{PV} / \mathrm{L}$

Group 5 IM Motor Parameters

Pr.	Explanation	Settings	Factory Setting	$\stackrel{1}{>}$	-	$\begin{aligned} & 0 \\ & \omega \end{aligned}$	O	O	등
05-00	Motor Auto Tuning	0: No function 1: Rolling test (Rs, Rr, Lm, Lx, no-load current) 2: Static Test	0	\bigcirc					
05-01	Full-load Current of Motor	40-120\%	\#.\#\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
05-02	Rated power of Motor	0.00~655.35kW	\#.\#\#			\bigcirc	\bigcirc	\bigcirc	
05-03	Rated speed of Motor (rpm)	0~65535	1710		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
05-04	Number of Motor Poles	2~48	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
05-05	No-load Current of Motor	0-100\%	\#.\#\#		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
05-06	Rs of Motor	0.000~65.535 2	0.000			\bigcirc	\bigcirc	\bigcirc	
05-07	Rr of Motor	$0.000 \sim 65.535 \Omega$	0.000			\bigcirc	\bigcirc	\bigcirc	
05-08	Lm of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0			\bigcirc	\bigcirc	\bigcirc	
05-09	Lx of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0			\bigcirc	\bigcirc	\bigcirc	
N 05-10	Torque Compensation Time Constant	0.001~10.000sec	0.020			\bigcirc			
N 05-11	Slip Compensation Time Constant	0.001~10.000sec	0.100			\bigcirc			
N05-12	Torque Compensation Gain	0~10	0	\bigcirc	\bigcirc				
N05-13	Slip Compensation Gain	0.00~10.00	0.00	-	\bigcirc	-			
N 05-14	Slip Deviation Level	0~1000\% (0: disable)	0		\bigcirc	\bigcirc	\bigcirc		
N 05-15	Detection Time of Slip Deviation	$0.0 \sim 10.0 \mathrm{sec}$	1.0		\bigcirc	-	-		
N05-16	Over Slip Treatment	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	0		\bigcirc	-	-		
N 05-17	Hunting Gain	0~10000 (0: disable)	2000	\bigcirc	\bigcirc	\bigcirc			
05-18	Accumulative Motor Operation Time (Min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
05-19	Accumulative Motor Operation Time (day)	00~65535	00	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	
N05-20	Core Loss Compensation	0~250\%	10			\bigcirc			

Group 6 Protection Parameters

Pr.	Explanation	Settings	Factory Setting	¢	-	¢	O	-	든
N06-00	Low Voltage Level	160.0~220.0Vdc	180.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$320.0 \sim 440.0 \mathrm{Vdc}$	360.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-01	Phase-loss Protection	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-02	Over-current Stall Prevention during Acceleration	$\begin{aligned} & \text { 00: disable } \\ & 00 \sim 250 \% \end{aligned}$	00	\bigcirc	\bigcirc	\bigcirc			
N 06-03	Over-current Stall Prevention during Operation	$\begin{aligned} & \text { 00: disable } \\ & 00 \sim 250 \% \end{aligned}$	00	\bigcirc	\bigcirc	\bigcirc			
N06-04	Accel./Decel. Time Selection of Stall Prevention at constant speed	0 : by current accel/decel time 1: by the 1st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel time	0	\bigcirc	\bigcirc	\bigcirc			
N06-05	Over-torque Detection Selection (OT1)	0: disable 1: over-torque detection during constant speed operation, continue to operate after detection 2: over-torque detection during constant speed operation, stop operation after detection 3: over-torque detection during operation, continue to operate after detection 4: over-torque detection during operation, stop operation after detection	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-06	Over-torque Detection Level (OT1)	10~250\%	150	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-07	Over-torque Detection Time (OT1)	$0.0 \sim 60.0 \mathrm{sec}$	0.1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-08	Over-torque Detection Selection (OT2)	0: disable 1: over-torque detection during constant speed operation, continue to operate after detection 2: over-torque detection during constant speed operation, stop operation after detection 3: over-torque detection during operation, continue to operate after detection 4: over-torque detection during operation, stop operation after detection	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-09	Over-torque Detection Level (OT2)	10~250\%	150	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-10	Over-torque Detection Time (OT2)	$0.0 \sim 60.0 \mathrm{sec}$	0.1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-11	Current Limit	0~250\%	150				\bigcirc	\bigcirc	
06-12	Electronic Thermal Relay Selection	$\begin{array}{\|l\|} \hline \text { 0: Inverter motor } \\ \text { 1: Standard motor } \\ \text { 2: Disable } \\ \hline \end{array}$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-13	Electronic Thermal Characteristic	$30.0 \sim 600.0 \mathrm{sec}$	60.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-14	Heat Sink Over-heat (OH) Warning	$0.0 \sim 110.0^{\circ} \mathrm{C}$	85.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 06-15	Stall Prevention Limit Level	0~100\% (refer to Pr.06-02, Pr.06-03)	50	\bigcirc	\bigcirc	\bigcirc			
06-16	Present Fault Record	0 : No fault 1: Over-current during acceleration (ocA) 2: Over-current during deceleration (ocd) 3: Over-current during constant speed (ocn) 4: Ground fault (GFF) 5: IGBT short-circuit (occ) 6: Over-current at stop (ocS) 7: Over-voltage during acceleration (ovA) 8: Over-voltage during deceleration (ovd) 9: Over-voltage during constant speed (ovn) 10: Over-voltage at stop (ovS)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-17	Second Most Recent Fault Record		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-18	Third Most Recent Fault Record		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-19	Fourth Most Recent Fault Record		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-20	Fifth Most Recent Fault Record		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-21	Sixth Most Recent Fault Record		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Pr.	Explanation	Settings	Factory Setting	$\stackrel{4}{>}$	$\begin{aligned} & 0 \\ & \hline 1 \\ & \hline 1 \end{aligned}$	$\underset{\substack{u \\ \hline}}{\substack{2}}$	¢	¢	ㅊ
		11: Low-voltage during acceleration (LvA) 12: Low-voltage during deceleration (Lvd) 13: Low-voltage during constant speed (Lvn) 14: Low-voltage at stop (LvS) 15: Phase loss (PHL) 16: IGBT heat sink over-heat (oH 1) 17: Heat sink over-heat (oH 2)(for 40 HP above) 18: TH1 open loop error (tH 1 o) 19: TH2 open loop error (tH 2 o) 20: Fan error signal output 21: over-load (oL) (150\% 1Min) 22: Motor over-load (EoL1) 23: Reserved 24: Motor PTC overheat (oH 3) 25: Reserved 26: over-torque 1 (ot1) 27: over-torque 1 (ot2) 28: Reserved 29: Reserved 30: Memory write-in error (cF1) 31: Memory read-out error (cF2) 32: Isum current detection error (cd0) 33: U-phase current detection error (cd1) 34: V-phase current detection error (cd2) 35: W-phase current detection error (cd3) 36: Clamp current detection error (Hd0) 37: Over-current detection error (Hd1) 38: Over-voltage detection error (Hd2) 39: Ground current detection error (Hd3) 40: Auto tuning error (AuE) 41: PID feedback loss (AFE) 42: PG feedback error (PGF1) 43: PG feedback loss (PGF2) 44: PG feedback stall (PGF3) 45: PG slip error (PGF4) 46: PG ref input error (PGr1) 47: PG ref loss (PGr2) 48: Analog current input error (ACE) 49: External fault input (EF) 50: Emergency stop (EF1) 51: Reserved 52: Password error (PcodE) 53: Reserved 54: Communication error (cE1) 55: Communication error (cE2) 56: Communication error (cE3) 57: Communication error (cE4) 58: Communication Time-out (cE10) 59: PU time-out (cP10) 60: Brake chopper error (bF) 61-62: Reserved 63: Safety loop error (Sry) 64: Mechanical brake error (MBF) 65: PGF5 hardware error							
N06-22	Fault Output Option 1	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 06-23	Fault Output Option 2	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-24	Fault Output Option 3	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-25	Fault Output Option 4	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-26	PTC (Positive Temperature Coefficient) Detection Selection	0: Warn and keep operation 1: Warn and ramp to stop	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N06-27	PTC Level	0.0~100.0\%	50.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 06-28	Filter Time for PTC Detection	0.00~10.00sec	0.20	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-29	EPS Voltage	$\begin{array}{\|l\|} \hline 48.0 \sim 375.0 \mathrm{Vdc} \\ 96.0 \sim 750.0 \mathrm{Vdc} \\ \hline \end{array}$	$\begin{aligned} & \hline 48.0 \\ & 96.0 \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 06-30	Setting Method of Fault Output	0: By settings of Pr.06-22~06-25 1: By the binary setting	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Group 7 Special Parameters

Pr.	Explanation	Settings	Factory Setting	$\stackrel{ }{\text { ¢ }}$	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \frac{1}{4} \end{array}$	$\frac{0}{\omega}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\begin{array}{\|c} \text { O} \\ 0 \\ 0 \\ \hline 1 \end{array}$	능
N07-00	Brake Chopper Level	$230 \mathrm{~V}: 350.0 \sim 450.0 \mathrm{Vdc}$ $460 \mathrm{~V}: 700.0 \sim 900.0 \mathrm{Vdc}$	$\begin{aligned} & \hline 380.0 \\ & 760.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
07-01	Brake ED Value Setting	0~100\%	100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N07-02	DC Brake Current Level	0~100\%	0	\bigcirc	\bigcirc	\bigcirc			
N07-03	DC Brake Time during Start-	0.0~60.0 sec	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N07-04	DC Brake Time during Stopping	0.0~60.0 sec	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N07-05	Start-point for DC Brake	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
N07-06	DC Brake Proportional Gain	1~500Hz	50	\bigcirc	\bigcirc	\bigcirc			
N07-07	Dwell Time at Accel.	0.00~600.00sec	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N07-08	Dwell Frequency at Accel.	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N07-09	Dwell Time at Decel.	0.00~600.00sec	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N07-10	Dwell Frequency at Decel.	0.00~120.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N07-11	Fan Control	0: Fan always ON 1: 1 minute after $A C$ motor drive stops, fan will be OFF 2: AC motor drive runs and fan ON, AC motor drive stops and fan OFF 3: Fan ON to run when preliminary heat sink temperature attained 4: Fan always OFF	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N07-12	Torque Command	-100.0~100.0\% (Pr. 07-14 setting=100\%)	0.0					\bigcirc	
N07-13	Torque Command Source	0: Digital keypad (KPVL-CC01) 1: RS485 serial communication (RJ-11) 2: Analog signal (Pr.03-00)	2					\bigcirc	
N07-14	Maximum Torque Command	0~500\%	100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N 07-15	Filter Time of Torque Command	0.000~1.000 sec	0.000					\bigcirc	
07-16	Speed Limit Selection	$\begin{aligned} & \text { 0: By Pr.07-17 and Pr.07-18 } \\ & \text { 1: Frequency command source (Pr.00-14) } \\ & \hline \end{aligned}$	0					\bigcirc	
N 07-17	Torque Mode + Speed Limit	0~120\%	10					\bigcirc	
N07-18	Torque Mode-Speed Limit	0~120\%	10					\bigcirc	
N07-19	Source of Torque Offset	0: Disable 1: Analog input (Pr.03-00) 2: Torque offset setting (Pr.07-20) 3: Control by external terminal (by Pr.07-21 to Pr.07-23)	0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N07-20	Torque Offset Setting	0.0~100.0\%	0.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N07-21	High Torque Offset	0.0~100.0\%	30.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N07-22	Middle Torque Offset	0.0~100.0\%	20.0			\bigcirc	O	\bigcirc	\bigcirc
N07-23	Low Torque Offset	0.0~100.0\%	10.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N07-24	Forward Motor Torque Limit	0~500\%	200				\bigcirc	\bigcirc	\bigcirc
N07-25	Forward Regenerative Torque Limit	0~500\%	200				\bigcirc	\bigcirc	\bigcirc
N 07-26	Reverse Motor Torque Limit	0~500\%	200				\bigcirc	\bigcirc	\bigcirc
N07-27	Reverse Regenerative Torque Limit	0~500\%	200				\bigcirc	\bigcirc	\bigcirc
N07-28	Emergency Stop (EF) \& Forced Stop Selection	0: Coast to stop 1: By deceleration Time 1 2: By deceleration Time 2 3: By deceleration Time 3 4: By deceleration Time 4 5: By Pr.01-31	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N07-29	Time for Decreasing Torque at Stop	0.000~1.000 sec	0.000				\bigcirc	\bigcirc	\bigcirc

Group 8 PM Motor Parameters

Pr.	Explanation	Settings	Factory Setting	$\stackrel{1}{3}$	$\begin{aligned} & 0 \\ & \hline 04 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \omega \end{aligned}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned} \right\rvert\,$	O	등
08-00	Motor Auto Tuning	0: No function 1: Only for the unloaded motor, auto measure the angle between magnetic field and PG origin (08-09) 2: For PM motor parameters 3: Auto measure the angle between magnetic field and PG origin (08-09)	0						\bigcirc
08-01	Full-load Current of Motor	40-120\%	\#.\#\#						\bigcirc
08-02	Rated power of Motor	$0.00 \sim 655.35 \mathrm{~kW}$	\#.\#\#						\bigcirc
08-03	Rated speed of Motor (rpm)	0~65535	1710						\bigcirc
08-04	Number of Motor Poles	2~96	4						\bigcirc
08-05	Rs of Motor	0.000~65.535	0.000						\bigcirc
08-06	Ld of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0						\bigcirc
08-07	Lq of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0						\bigcirc
08-08	Reserved								
08-09	Angle between Magnetic Field and PG Origin	0.0-360.0 ${ }^{\circ}$	360						\bigcirc
08-10	Magnetic Field Reorientation	$\begin{aligned} & \hline \text { 0: Disable } \\ & \text { 1: Enable } \\ & \hline \end{aligned}$	0						\bigcirc

Group 9 Communication Parameters

Pr．	Explanation	Settings	Factory Setting	$\stackrel{1}{>}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ \hline 1 \end{array}$	む	O	$\begin{aligned} & 0 \\ & 0 . ⿺ ⿻ 一 ⿰ 冫 \end{aligned}$	등
N09－00	Communication Address	1～254	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N09－01	Transmission Speed	4．8～115．2Kbps	9.6	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N09－02	Transmission Fault Treatment	0：Warn and keep operation 1：Warn and ramp to stop 2：Reserved 3：No action and no display	3	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N09－03	Time－out Detection	0．0～100．0 sec	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N09－04	Communication Protocol	0：7N1（ASCII） 1：7N2（ASCII） 2：7E1（ASCI） 3：7O1（ASCII） 4：7E2（ASCII） 5：7O2（ASCII） 6：8N1（ASCII） 7：8N2（ASCII） 8：8E1（ASCII） 9：801（ASCII） 10：8E2（ASCI） 11：802（ASCII） 12：8N1（RTU） 13：8N2（RTU） 14： 8 E 1 （RTU） 15：8O1（RTU） 16：8E2（RTU） 17： $8 \mathrm{OO2}$（RTU）	13	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N09－05	Response Delay Time	0．0～200．0ms	2.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Chapter 4 Parameters｜［ V アンV／

Group 10 Speed Feedback Control Parameters

Pr．	Explanation	Settings	Factory Setting	$\stackrel{\square}{>}$	$\begin{aligned} & 0 \\ & \text { O } \\ & \hline \mathbf{1} \end{aligned}$	む	V1	은	든
10－00	PG Signal Type	0：No function 1：ABZ 2：ABZ＋Hall 3：SIN／COS＋Sinusoidal 4：SIN／COS＋Endat 5：SIN／COS 6：SIN／COS＋Hiperface	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
10－01	Encoder Pulse	1～20000	600		\bigcirc		\bigcirc	\bigcirc	\bigcirc
10－02	Encoder Input Type Setting	0：Disable 1：Phase A leads in a forward run command and phase B leads in a reverse run command 2：Phase B leads in a forward run command and phase A leads in a reverse run command 3：Phase A is a pulse input and phase B is a direction input．（low input＝reverse direction，high input＝forward direction） 4：Phase A is a pulse input and phase B is a direction input．（low input＝forward direction，high input＝reverse direction） 5：Single－phase input	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
N10－03	Encoder Feedback Fault Treatment（PGF1，PGF2）	$\begin{aligned} & \text { 0: Warn and keep operation } \\ & \text { 1: Warn and ramp to stop } \\ & \text { 2: Warn and stop operation } \\ & \hline \end{aligned}$	2		\bigcirc		\bigcirc	\bigcirc	
N 10－04	Detection Time for Encoder Feedback Fault	0．00～10．0 sec	1.0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
N10－05	Encoder Stall Level（PGF3）	0～120\％（0：disable）	115		\bigcirc	\bigcirc	\bigcirc		\bigcirc
N10－06	Encoder Stall Detection Time	0．0～2．0 sec	0.1		\bigcirc	\bigcirc	\bigcirc		\bigcirc
N10－07	Encoder Slip Range（PGF4）	0～50\％（0：disable）	50		\bigcirc	\bigcirc	\bigcirc		\bigcirc
N10－08	Encoder Slip Detection Time	$0.0 \sim 10.0 \mathrm{sec}$	0.5		\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 10－09	Encoder Stall and Slip Error Treatment	0：Warn and keep operation 1：Warn and ramp to stop 2：Warn and coast to stop	2		\bigcirc	\bigcirc	\bigcirc		\bigcirc
10－10	Mode Selection for UVW Input	$0: Z$ signal is at the falling edge of U－phase $1: Z$ signal is at the rising edge of U－phase	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
N10－11	ASR（Auto Speed Regulation）Control（P）of Zero Speed	0．0～500．0\％	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 10－12	ASR（Auto Speed Regulation）Control（I）of Zero Speed	0．000～10．000 sec	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N10－13	ASR（Auto Speed Regulation）Control（P） 1	0．0～500．0\％	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N10－14	ASR（Auto Speed Regulation）Control（I） 1	0．000～10．000 sec	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 10－15	ASR（Auto Speed Regulation）Control（P） 2	0．0～500．0\％	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N10－16	ASR（Auto Speed Regulation）Control（I） 2	0．000～10．000 sec	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N10－17	ASR 1／ASR2 Switch Frequency	0．00～120．00Hz（0：disable）	7.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 10－18	ASR Primary Low Pass Filter Gain	0．000～0．350 sec	0.008	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N 10－19	Zero Speed Gain（P）	0～655．00\％e	80.00						\bigcirc
N 10－20	Zero Speed／ASR1 Width Adjustment	0．0～120．00Hz	5.00		\bigcirc		\bigcirc		\bigcirc
N 10－21	ASR1／ASR2 Width Adjustment	0．0～120．00Hz	5.00		\bigcirc		\bigcirc		\bigcirc
N 10－22	Operation Time of Zero Speed	0．000～65．535 sec	0.250						\bigcirc
N 10－23	Filter Time of Zero Speed	0．000～65．535 sec	0.004						\bigcirc
N 10－24	Time for Executing Zero Speed	$\begin{aligned} & \text { 0: after the brake release set in Pr.02-29 } \\ & \text { 1: after the brake signal input (Pr.02-01~02-08 is set to 42) } \end{aligned}$	0						\bigcirc

Group 11 Advanced Parameters

Pr.	Explanation	Settings	Factory Setting	"	$\begin{array}{\|l\|l\|} \hline 0 \\ 0 \\ \hline 0 \end{array}$	品	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	등
N11-00	System Control	Bit $0=0$: no function Bit 0=1: ASR Auto tuning, PDFF enable Bit $7=0$: no function Bit 7=1: When position control is enabled, it doesn't need to set Pr.07-02 (DC Brake Current Level) Bit $15=0$: when power is applied, it will detect the position of magnetic field again Bit $15=1$: when power is applied, it will start from the magnetic field position of previous power failure	0				\bigcirc		\bigcirc
N11-01	Elevator Speed	$0.10 \sim 3.00 \mathrm{~m} / \mathrm{s}$	1.00				\bigcirc		\bigcirc
N11-02	Sheave Diameter	$100 \sim 2000 \mathrm{~mm}$	400				\bigcirc		\bigcirc
N11-03	Mechanical Gear Ratio	1~100	1				\bigcirc		\bigcirc
N11-04	Suspension Ratio	$\begin{array}{\|l\|l} \hline 0: 1: 1 \\ 1: 2: 1 \end{array}$	1				\bigcirc		\bigcirc
N11-05	Inertial Ratio	1~300\%	40				\bigcirc		\bigcirc
N11-06	Zero-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$	10				\bigcirc		\bigcirc
N11-07	Low-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$	10				\bigcirc		\bigcirc
N11-08	High-speed Bandwidth	0~40Hz	10				\bigcirc		\bigcirc
N11-09	PDFF Gain Value	0~200\%	30				\bigcirc		\bigcirc
N11-10	Gain for Speed Feed Forward	0~500	0				\bigcirc		\bigcirc
N11-11	Notch Filter Depth	0~20db	0				\bigcirc		\bigcirc
N11-12	Notch Filter Frequency	$0.00 \sim 200.00 \mathrm{~Hz}$	0.00				\bigcirc		\bigcirc
N11-13	Low-pass Filter Time of Keypad Display	0.001~65.535s	0.500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N11-14	Motor Current at Accel.	50~200\%	150						\bigcirc
N11-15	Elevator Acceleration	$0.60 \sim 2.00 \mathrm{~m} / \mathrm{s}$	0.75						\bigcirc
11-16	Reserved								
11-17	Reserved								
11-18	Reserved								

Chapter 4 Parameters | [$\mathrm{V} / \mathrm{P}-\mathrm{V}$]

Group 12 User-defined Parameters

Pr.	Explanation	Settings	Factory Setting)	O	芯	-	O	등
$$	User-defined Parameters	Pr.00-00 to Pr.11-18	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Group 13 View User-defined Parameters

Pr.	Explanation	Settings	Factory Setting	$\stackrel{1}{3}$	$\stackrel{0}{4}$	あ	O	O	등
13-00									
$\begin{gathered} \text { । } \\ 13-31 \end{gathered}$	View User-defined Parameters	Pr.00-00 to Pr.11-18	-	\bigcirc	\bigcirc	O	-	O	O

4.2 Description of Parameter Settings

Group 0 User Parameters $\quad N$: This parameter can be set during operation.

00-00 Identity Code of the AC Motor Drive

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :--- | :--- | :--- | :--- | :--- | Factory setting: \#\# Settings Read Only

00-01 Rated Current Display of the AC Motor Drive
Control
mode VF VFPG SVC FOCPG TQCPG FOCPM \quad Factory setting: \#\#
Settings Read Only
[1] Pr. 00-00 displays the identity code of the AC motor drive. The capacity, rated current, rated voltage and the max. carrier frequency relate to the identity code. Users can use the following table to check how the rated current, rated voltage and max. carrier frequency of the AC motor drive correspond to the identity code.
[a] Pr.00-01 displays the rated current of the AC motor drive. By reading this parameter the user can check if the AC motor drive is correct.

	230V Series							
kW	5.5	7.5	11	15	18.5	22	30	37
HP	7.5	10	15	20	25	30	40	50
Pr.00-00	12	14	16	18	20	22	24	26
Rated Output Current for General Purposes (A)	21.9	27.1	41	53	70	79	120	146
Rated Output Current for Elevators (A)	25	31	47	60	80	90	150	183
Max. Carrier Frequency	15 kHz							

	460V Series										
kW	5.5	7.5	11	15	18.5	22	30	37	45	55	75
HP	7.5	10	15	20	25	30	40	50	60	75	100
Pr.00-00	13	15	17	19	21	23	25	27	29	31	33
Rated Output Current for General Purposes (A)	12.3	15.8	21	27	34	41	60	73	91	110	150
Rated Output Current for Elevators (A)	14	18	24	31	39	47	75	91	113	138	188
Max. Carrier Frequency	15 kHz						9 kHz			6 kHz	

00-02 Parameter Reset

Control
mode

Settings 0 No Function
1 Read Only
8 Keypad Lock
9 All parameters are reset to factory settings $(50 \mathrm{~Hz}, 220 \mathrm{~V} / 380 \mathrm{~V})$
10 All parameters are reset to factory settings ($60 \mathrm{~Hz}, 220 \mathrm{~V} / 440 \mathrm{~V}$)
(1) When it is set to 1 , all parameters are read only except Pr.00-00~00-07 and it can be used with password setting for password protection.

1 This parameter allows the user to reset all parameters to the factory settings except the fault records (Pr.06-16 ~ Pr.06-21).

50 Hz : Pr.01-01 is set to 50 Hz and Pr.01-02 is set to 230 V or 400 V .

60 Hz : Pr.01-01 is set to 60 Hz and $\operatorname{Pr} .01-02$ is set to 230 Vor 460 V .
Wl When Pr.00-02=08, the KPVL-CC01 keypad is locked and only Pr.00-02 can be set. To unlock the keypad, set Pr.00-02=00.

Wl When Pr.00-02 is set to 1, Pr.00-02 setting should be set to 0 before setting to other setting.
00-03 \sim Start-up Display Selection

Control mode VF VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0

Settings 0 Display the frequency command value. (LED F)
1 Display the actual output frequency (LED H)
2 DC BUS voltage
3 Display the output current (A)
4 Output voltage
5 Multifunction display, see Pr.00-04
[al This parameter determines the start-up display page after power is applied to the drive.

00-04 N Content of Multi-Function Display

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :--- | :--- | :--- | :--- | :--- | Factory setting: 0

1 Reserved

2 Display actual output frequency (H)

U: Act ual	Freq.
S Ω	0.00 Hz

3 Display the actual DC BUS voltage in VDC of the AC motor drive

U: DC BUS	
Sa	255.3 Volt

4 Display the output voltage in VAC of terminals U, V, W to the motor.

U: Out put	Volt age
Sa	$0.0 V o l t$

5 Display the power factor angle in ${ }^{\circ}$ of terminals U, V, W to the motor.

U: Power	Angle
So	0.0deg

6 Display the output power in kW of terminals U, V and W to the motor.

U: Out put	Power
Se	0.000 KW

7 Display the actual motor speed in rpm (enabled when using with PG card).

8
Display the estimated value of torque in $\mathrm{kg}-\mathrm{m}$ as it relates to current.

9 Display PG position

10 Reserved
Display the signal of AUI1 analog input terminal in
11 \%.
Range 0~10V corresponds to 0~100\%. (1.)
$12 \begin{aligned} & \text { Display the signal of } \mathrm{ACI} \text { analog input terminal in \%. } \\ & \text { Range 4~20mA/0~10V corresponds to } 0 \sim 100 \% \text {. (2.) }\end{aligned}$

$U: \mathrm{ACl}$	0.0%

Display the signal of AUI2 analog input terminal in
13 \%.
Range $-10 \mathrm{~V} \sim 10 \mathrm{~V}$ corresponds to $0 \sim 100 \%$. (3.)
14 Display the temperature of heat $\operatorname{sink}\left({ }^{\circ} \mathrm{C}\right)$

U: AUI 2	
Sa	0.3%

| U: Heat | Sink | |
| :--- | :--- | :--- | :--- | :--- |
| Sa | 0.0 | C |

15 Display the temperature of IGBT in ${ }^{\circ} \mathrm{C}$.

U: I GBT Temp		
So	41.3	C

16 Display digital input status ON/OFF (i)

17 Display digital output status ON/OFF (o)

18 Display multi-step speed

19 The corresponding CPU pin status of digital input (i.)

$\mathrm{U}: \mathrm{DI}$	Pi n St at us
$\mathrm{S} \Omega$	FFFF

20 The corresponding CPU pin status of digital output (o.)

21
| Reserved 23

24 Output AC voltage when malfunction (8)

25 Output DC voltage when malfunction (8.)

26 Output frequency when malfunction (h)

27 Output current when malfunction (4)

28 Output frequency command when malfunction (h.)

U: Error Vout	
Sa	0.0 Vac

U: Error Vbus
Sa 256.4 Vdc

U: Error	Fout
So	0.00 Hz

U: Error	Current
So	0.00 Amps

U: Error	Fcmd
Sa	0.00 Amps

[1] It is used to display the content when LED U is ON. It is helpful for getting the AC motor drive's status by this parameter.

> U: DI ON/ OFF St at Sの 0086

Terminal	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD
Status	0	0	1	0	0	0	0	1	1	0

0: OFF, 1: ON
MI1: Pr.02-01 is set to 1 (multi-step speed command 1)
MI8: Pr.02-08 is set to 8 (the 1st, 2nd acceleration/deceleration time selection)
If REV, MI1 and MI8 are ON, the value is 0000000010000110_{2} in binary and 0086 H in HEX. At the meanwhile, if Pr.00-04 is set to " 14 " or " 17 ", it will display " 0086 " with LED U is ON on the keypad KPVL-CC01. The setting 14 is the status of digital input and the setting 17 is the corresponding CPU pin status of digital input. User can set to 14 to monitor digital input status and then set to 17 to check if the wire is normal.

```
U: DO ON/ OFF St at
S& 0001
```

Terminal	MO10	MO9	MO8	MO7	MO6	MO5	MO4	MO3	MO2	MO1	MRA	RA	MO10
Status	0	0	0	0	1	0	0	0	0	1	1	0	0

Chapter 4 Parameters | [$1 / \sim 3 / 4$

RA: Pr.02-11 is set to 9 (Drive ready).
After applying the power to the AC motor drive, if there is no other abnormal status, the contact will be ON. At the meanwhile, if Pr.00-04 is set to 15 or 18 , it will display 0001 with LED U is $O N$ on the keypad. The setting 15 is the status of digital output and the setting 18 is the corresponding CPU pin status of digital output. User can set 15 to monitor the digital output status and then set to 18 to check if the wire if normal.

00-05 \sim User Defined Coefficient K

| Control
 mode | VF | VFPG | sVC | FOCPG TQCPG FOCPM |
| :--- | :--- | :--- | :--- | :--- | Factory setting: 0

[d] It is used digital setting method
Digital 4: decimal point number (0: no decimal point, 1: 1 decimal point and so on.)
Digit 0-3: 40 to 9999 (the corresponding value for the max. frequency).

[a] For example, if use uses rpm to display the motor speed and the corresponding value to the 4pole motor 60 Hz is 1800 . This parameter can be set to 01800 to indicate that the corresponding value for 60 Hz is 1800 rpm . If the unit is rps , it can be set 10300 to indicate the corresponding value for 60 Hz is 30.0 (a decimal point).
[] Only frequency setting can be displayed by the corresponding value.
[1] After setting Pr.00-05, it won't display the unit of frequency "Hz" after returning to the main menu.

00-06	Software Version				
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: Read Only
Settings				Read Only	
Display	$\# . \# \#$				

00-07	NPassword Input	Unit: 1		
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM

[1] The function of this parameter is to input the password that is set in Pr.00-08. Input the correct password here to enable changing parameters. You are limited to a maximum of 3 attempts. After 3 consecutive failed attempts, a fault code "Password Error" will show up to force the user to restart the AC motor drive in order to try again to input the correct password.
 Please note that all the settings will be set to factory setting.

00-08 N Password Set
Unit: 1

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :--- | :--- | :--- | :--- | :--- | Factory setting: 0

[1] To set a password to protect your parameter settings.
If the display shows 0 , no password is set or password has been correctly entered in Pr.00-07. All parameters can then be changed, including Pr.00-08.

The first time you can set a password directly. After successful setting of password the display will show 1.

Be sure to record the password for later use.
To cancel the parameter lock, set the parameter to 0 after inputting correct password into Pr. 00-07.

The password consists of min. 2 digits and max. 5 digits.
[1] How to make the password valid again after decoding by Pr.00-07:
Method 1: Re-input original password into Pr.00-08 (Or you can enter a new password if you want to use a changed or new one).

Method 2: After rebooting, password function will be recovered.

Password Decode Flow Chart

Password Setting

Decoding Flow Chart

Forgetting Passwrod

00-09 Control Method
 Control mode VF VFPG SVC FOCPG TQCPG FOCPM

Factory Setting: 0

Settings	0	V/f control
	1	V/f + Encoder (VFPG)
	2	Sensorless vector control (SVC)
	3	FOC vector control + Encoder (FOCPG)
4	Torque control + Encoder (TQCPG)	
	8	FOC PM control (FOCPM)

This parameter determines the control method of the AC motor drive:
Setting 0: user can design V/f ratio by requirement and control multiple motors simultaneously.
Setting 1: User can use PG card with Encoder to do close-loop speed control.
Setting 2: To have optimal control characteristic by auto-tuning.
Setting 3: To increase torque and control speed precisely. (1:1000)
Setting 4: To increase accuracy for torque control.

Setting 8: To increase torque and control speed precisely. (1:1000). This setting is only for using with permanent magnet motor and others are for induction motor.

00-10 Reserved

00-11 Reserved

00-12 N Carrier Frequency
Unit: 1

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :---: | :--- | :--- | :--- | :--- | Factory setting: 12

Settings $2 \sim 15 \mathrm{KHz}$
[al This parameter determinates the PWM carrier frequency of the AC motor drive.

[a] From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, AC motor drive heat dissipation, and motor acoustic noise.

00-13 Nuto Voltage Regulation (AVR) Function

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM | Factory setting: 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | Settings 0 Enable AVR

1 Disable AVR
2 Disable AVR when deceleration stop
$\mathbb{C l}$ It is used to select the AVR mode. AVR is used to regulate the output voltage to the motor. For example, if V / f curve is set to $\mathrm{AC} 200 \mathrm{~V} / 50 \mathrm{~Hz}$ and the input voltage is from 200 to 264 VAC , the output voltage won't excess AC200V/50Hz. If the input voltage is from 180 to 200 V , the output voltage to the motor and the input voltage will be in direct proportion.
[a] When setting Pr.00-13 to 1 during ramp to stop and used with auto accel./decel. function, the acceleration will be smoother and faster.

00-14 $\quad N$ Source of the Master Frequency Command

Control mode	VF	VFPG	SVC	FOCPG FOCPM	Factory setting: 1

Settings 1 RS-485 serial communication or digital keypad (KPVL-CC01)
2 External analog input (Pr. 03-00)
3 Digital terminals input (Pr.04-00~04-15)
[1] This parameter determines the drive's master frequency source.

00-15 \quad Source of the Operation Command

Control mode	VF	VFPG	SVC \quad FOCPG TQCPG FOCPM	Factory setting: 1
	Settings	1	External terminals	
		2	RS-485 serial communication or digital keypad (KPVL-CC01)	

[1] VFD-VL series is shipped without digital keypad and users can use external terminals or RS485 to control the operation command.
[a] When the LED PU is light, the operation command can be controlled by the optional digital keypad (KPVL-CC01). Refer to appendix B for details.

Group 1 Basic Parameters

| 01-00 | Maximum Output Frequency | Unit: 0.01 | | |
| :--- | :--- | :--- | :--- | :--- | ---: |
| Control
 mode | VF VFPG | SVC | FOCPG TQCPG FOCPM | Factory setting: 60.00/50.00 |
| | Settings | 10.00 to 120.00 Hz | | |

[1] This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to $+10 \mathrm{~V}, 4$ to 20 mA and -10 V to +10 V) are scaled to correspond to the output frequency range.

| 01-01 | 1st Output Frequency Setting | Unit: 0.01 | |
| :---: | :---: | :---: | :---: | ---: |
| Control
 mode | VF VFPG SVC FOCPG TQCPG FOCPM | Factory setting: 60.00/50.00 | |
| | Settings | $0.00 \sim 120.00 \mathrm{~Hz}$ | |

[1] It is for the base frequency and motor rated frequency.
([]) This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. If the motor is 60 Hz , the setting should be 60 Hz . If the motor is 50 Hz , it should be set to 50 Hz .

01-02	1st Output Voltage Setting			
Control mode	VF VFPG	SVC	FOCPG TQCPG FOCPM	
	Settings	230 V series	0.1 to 255.0 V	
		460 V series	0.1 to 510.0 V	Factory Setting: 220.0
		Factory Setting: 440.0		

[1] It is for the base frequency and motor rated frequency.
(1) This value should be set according to the rated voltage of the motor as indicated on the motor nameplate. If the motor is 220 V , the setting should be 220.0 . If the motor is 200 V , it should be set to 200.0.
[1] There are many motor types in the market and the power system for each country is also difference. The economic and convenience method to solve this problem is to install the AC motor drive. There is no problem to use with the different voltage and frequency and also can amplify the original characteristic and life of the motor.

[a] V/f curve setting is usually set by the motor's allowable loading characteristics. Pay special attention to the motor's heat dissipation, dynamic balance, and bearing lubricity, if the loading characteristics exceed the loading limit of the motor.
[a] For the V/f curve setting, it should be Pr.01-01 \geq Pr.01-03 \geq Pr.01-05 \geq Pr.01-07. There is no limit for the voltage setting, but a high voltage at the low frequency may cause motor damage, overheat, stall prevention or over-current protection. Therefore, please use the low voltage at the low frequency to prevent motor damage.

V/f Curve

Control
mode

VF VFPG SVC FOCPG

Settings $\quad 0.00 \sim 120.00 \mathrm{~Hz}$
[1] To distinguish which frequency should be start frequency, it needs to compare the value of min. output frequency and start frequency. The larger value will be start frequency. When min. output frequency > start frequency

When start frequency > min. output frequency

01-10 N Output Frequency Upper Limit
Unit: 0.01
Control VF VFPG SVC FOCPG FOCPM
Factory setting: 120.00 mode

Settings $\quad 0.00 \sim 120.00 \mathrm{~Hz}$
01-11 N Output Frequency Lower Limit
Unit: 0.01
Control VF VFPG SVC FOCPG FOCPM
Factory setting: 0.00
Settings $\quad 0.00 \sim 120.00 \mathrm{~Hz}$
[d] The upper/lower output frequency setting is used to limit the actual output frequency. If the frequency setting is lower than the start-up frequency, it will run with zero speed. If the frequency setting is higher than the upper limit, it will runs with the upper limit frequency. If output frequency lower limit > output frequency upper limit, this function is invalid.

01-12	N Accel. Time 1	Unit: 0.01
01-14	\wedge Accel. Time 2	Unit: 0.01
01-16	\wedge Accel. Time 3	Unit: 0.01
01-18	\wedge Accel. Time 4	Unit: 0.01
Contro mode	VF VFPG SVC FOCPG FOCPM	Factory setting: 3.00
	Settings $\quad 0.00 \sim 600.00 \mathrm{sec}$	
01-13	\wedge Decel. Time 1	Unit: 0.01
01-15	\wedge Decel. Time 2	Unit: 0.01
01-17	\wedge Decel. Time 3	Unit: 0.01
01-19	\wedge Decel. Time 4	Unit: 0.01
Control mode	VF VFPG SVC FOCPG FOCPM	Factory setting: 2.00

Settings $\quad 0.00 \sim 600.00 \mathrm{sec}$

01-20	NJOG Acceleration Time	Unit: 0.01		
01-21	NJOG Deceleration Time	Unit: 0.01		
Control mode	VF VFPG	sVc	FOCPG FOCPM	Factory setting: 1.00

Settings $\quad 0.00 \sim 600.00 \mathrm{sec}$
[ad The Acceleration Time is used to determine the time required for the AC motor drive to ramp from 0 Hz to Maximum Output Frequency (Pr.01-00).
[a] The Deceleration Time is used to determine the time require for the AC motor drive to decelerate from the Maximum Output Frequency (Pr.01-00) down to 0 Hz .
(1) The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals settings. The factory settings are acceleration time 1 and deceleration time 1.
[a] The larger against torque and inertia torque of the load and the accel./decel. time setting is less than the necessary value, it will enable torque limit and stall prevention function. When it happens, actual accel./decel. time will be longer than the action above.

01-22 NJOG Frequency
Unit: 0.01
Control VF VFPG SVC FOCPG TQCPG FOCPM Factory setting: 6.00 mode

Settings $\quad 0.00 \sim 120.00 \mathrm{~Hz}$
[d] Both external terminal JOG and key "JOG" on the keypad can be used. When the jog command is ON, the AC motor drive will accelerate from 0 Hz to jog frequency (Pr.01-22).

When the jog command is OFF, the AC motor drive will decelerate from Jog Frequency to zero. The used Accel./Decel. time is set by the Jog Accel./Decel. time (Pr.01-20, Pr.01-21).
da The JOG command can't be executed when the AC motor drive is running. In the same way, when the JOG command is executing, other operation commands are invalid except forward/reverse commands and STOP key on the digital keypad.

Frequency

JOG accel./decel. time
Control
mode VF VFPG SVC FOCPG FOCPM Factory setting: 0.00

[^1]
Chapter 4 Parameters | $1 / \pi>1 / 4$

[a] This parameter selects the frequency point for transition from acceleration/deceleration time 1 to acceleration/deceleration time 4.
[1] The transition from acceleration/deceleration time 1 to acceleration/deceleration time 4, may also be enabled by the external terminals (Pr. 02-01 to 02-08). The external terminal has priority over Pr. 01-23.

1st/4th Acceleration/Deceleration Switching

01-24	NS-curve for Acceleration Departure Time S1	Unit: 0.01
01-25	N S-curve for Acceleration Arrival Time S2	Unit: 0.01
Control mode	VF VFPG SVC FOCPG FOCPM	Factory setting: 1.00
Settings $\quad 0.00 \sim 25.00 \mathrm{sec}$		
01-26	N S-curve for Deceleration Departure Time S3	Unit: 0.01
01-27	N S-curve for Deceleration Arrival Time S4	Unit: 0.01
01-30	N S-curve for Deceleration Arrival Time S5	Unit: 0.01
Control mode	VF VFPG SVC FOCPG FOCPM	Factory setting: 1.00

Settings $\quad 0.00 \sim 25.00 \mathrm{sec}$
[a] It is used to give the smoothest transition between speed changes. The accel./decel. curve can adjust the S-curve of the accel./decel. When it is enabled, the drive will have different accel./decel. curve by the accel./decel. time.
[a] The Actual Accel. Time $=$ selected accel. Time $+($ Pr.01-24 + Pr.01-25)/2
The Actual Decel. Time $=$ selected decel. Time $+(\operatorname{Pr} .01-26+\operatorname{Pr} .01-27+\operatorname{Pr} .01-30 * 2) / 2$

01-29 N Switch Frequency for S3/S4 Changes to S5
Unit: 0.01
Control
mode VF VFPG SVC FOCPG FOCPM Factory setting: 0.00

Settings $\quad 0.00 \sim 120.00 \mathrm{~Hz}$
Id It is used to set the switch frequency between S4 and S5 for smooth stop.
[1] It is recommended to set this parameter to the leveling speed of elevator. Frequency

$$
01-25=\mathrm{S} 2 \quad 01-26=\mathrm{S} 3
$$

01-28 Mode Selection when Frequency< Fmin

Control mode	VF	VFPG	sVc	Factory setting: 0
	Settings	0	Output Waiting	
		1	Zero-speed operation	
		2	Fmin (4th output frequency setting)	

[1] When the AC motor drive is at OHz , it will operate by this parameter.
(al When it is set to 1 or 2 , voltage will be output by Fmin corresponding output voltage.

| 01-31 | Neceleration Time when Operating without RUN | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Command | | | |\quad Unit: 0.01

Settings $0.00 \sim 600.00 \mathrm{Sec}$

[d. The AC motor drive will stop by the setting of this parameter when canceling RUN command. Refer to the figure in Pr.01-29 for details.

Group 2 Digital Input/Output Parameters

02-00	2-wire/3-wire Operation Control				
Control mode	VF	VFPG	sVC	FOCPG TQCPG FOCPM	Factory setting: 0
	Settings	0	FWD/STOP, REV/STOP		
		1	FWD/STOP, REV/STOP (Line Start Lockout)		
		2	RUN/STOP, REV/FWD		
		3	RUN/STOP, REV/FWD (Line Start Lockout)		
		4	3-wire		
			3-wire (Line Start Lockout)		

[1] Three of the six methods include a "Line Start Lockout" feature. When line start lockout is enabled, the drive will not run once applying the power. The Line Start Lockout feature doesn't guarantee the motor will never start under this condition. It is possible the motor may be set in motion by a malfunctioning switch.
[1] This parameter is used to control operation from external terminals. There are three different control modes.

02-00	Control Circuits of the External Terminal
0,1 2-wire operation control (1) FWD/STOP REV/STOP	
2, 3 2-wire operation control (2) RUN/STOP REV/FWD	
$4,5$ 3-wire operation control	

02-01
Multi-Function Input Command 1 (MI1)
(it is Stop terminal for 3-wire operation)
Factory Setting: 1

02-02 Multi-Function Input Command 2 (MI2)
Factory Setting: 2
02-03 Multi-Function Input Command 3 (MI3)
Factory Setting: 3
02-04 Multi-Function Input Command 4 (MI4)
Factory Setting: 4
02-05 Multi-Function Input Command 5 (MI5)
Factory Setting: 0
02-06 Multi-Function Input Command 6 (MI6)
Factory Setting: 0
02-07 Multi-Function Input Command 7 (MI7)
Factory Setting: 0
02-08
Multi-Function Input Command 8 (MI8)
(specific terminal for Enable)
Factory Setting: 0
Settings 0-43

Settings	Control Mode					
	VF	VFPG	SVC	FOCPG	TQCPG	FOCPM
0: no function	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1: multi-step speed command 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
2: multi-step speed command 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
3: multi-step speed command 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
4: multi-step speed command 4	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
5: Reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6: JOG command	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
7: acceleration/deceleration speed inhibit	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
8: the 1st, 2nd acceleration/deceleration time selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
9: the 3rd, 4th acceleration/deceleration time selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
10: EF input (07-28)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11: Reserved						
12: Stop output	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13: Disable auto accel./decel. function	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
14: Reserved						
15: operation speed command form AUI1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
16: operation speed command form ACI	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
17: operation speed command form AUI2	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
18: Emergency Stop (07-28)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19-23: Reserved						
24: FWD JOG command	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
25: REV JOG command	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
26: Reserved						
27: ASR1/ASR2 selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
28: Emergency stop (EF1) (Motor coasts to stop)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
29-30: Reserved						
31: High torque bias (by Pr.07-21)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Chapter 4 Parameters Control Mode

| Settings | | Control Mode | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | VF | VFPG | SVC | FOCPG | TQCPG | FOCPM |
| 32: Middle torque bias (by Pr.07-22) | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 33: Low torque bias (by Pr.07-23) | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 34-37: Reserved | | | | | | |
| 38: Disable write EEPROM function | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 39: Torque command direction | | | | | \bigcirc | |
| 40: Enable drive function | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 41: Reserved | | | | | | |
| 42: Mechanical brake | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 43: EPS function | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |

[1] This parameter selects the functions for each multi-function terminal.
[d If Pr.02-00 is set to 3-wire operation control. Terminal MI1 is for STOP terminal. Therefore, MI1 is not allowed for any other operation.

Settings	Functions	Descriptions
0	No Function	
1	Multi-step speed command 1	15 step speeds could be conducted through the digital statuses of the 4 terminals, and 17 in total if the master speed and JOG are included. (Refer to Pr. 04-00~04-14)
2	Multi-step speed command 2	
3	Multi-step speed command 3	
4	Multi-step speed command 4	
5	Reset	After the error of the drive is eliminated, use this terminal to reset the drive.
6	JOG Command	JOG operation
7	Acceleration/deceleration Speed Inhibit	When this function is enabled, acceleration and deceleration is stopped and the AC motor drive starts to accel./decel. from the inhibit point.
8	The $1^{\text {st }}, 2^{\text {nd }}$ acceleration or deceleration time selection	The acceleration/deceleration time of the drive could be selected from this function or the digital statuses of the terminals; there are 4 acceleration/deceleration speeds in total for selection.
9	The $3^{\text {rd }}, 4^{\text {th }}$ acceleration or deceleration time selection	
10	EF Input	External fault input terminal and decelerates by Pr.0728. (EF fault will be recorded)
11	Reserved	
12	Stop output	

Settings	Functions	Descriptions
13	Disable auto accel./decel. function	It is used to disable auto accel./decal. function.
14	Reserved	
15	Operation speed command form AUI1	When this function is enabled, the source of the frequency will force to be AUI1.
16	Operation speed command form ACl	When this function is enabled, the source of the frequency will force to be ACI.
17	Operation speed command form AUI2	When this function is enabled, the source of the frequency will force to be AUI2.
18	Emergency Stop	When this function is enabled, the drive will ramp to stop by Pr.07-28 setting.
19-23	Reserved	
24	FWD JOG command	When this function is enabled, the drive will execute forward Jog command.
25	REV JOG command	When this function is enabled, the drive will execute reverse Jog command.
26	Reserved	
27	ASR1/ASR2 selection	ON: speed will be adjusted by ASR 2 setting. OFF: speed will be adjusted by ASR 1 setting.
28	Emergency stop (EF1) (Motor coasts to stop)	When it is ON, the drive will execute emergency stop. (it will have fault code record)
29-30	Reserved	
31	High torque bias (by Pr.07-21)	The high torque bias is according to the Pr.07-21 setting.
32	Middle torque bias (by Pr.07-22)	The middle torque bias is according to the Pr.07-22 setting.
33	Low torque bias (by Pr.07-23)	The low torque bias is according to the Pr.07-23 setting.
34-37	Reserved	
38	Disable write EEPROM function	When this function is enabled, you can't write into EEPROM.
39	Torque command direction	When the torque command source is ACI, it can change torque direction by enabling this function.
40	Enable drive function	When this function is enabled, the drive function can be executed. This function can be used with multi-function output (setting Pr.02-11~Pr.02-14 to 15) and (Pr.02-31 and Pr.02-32).

Settings	Functions	Descriptions
41	Reserved	When drive receives RUN command, the corresponding output terminal (setting 12) will be enabled after Pr.02- 29 detection time (Pr.02-35). If NOT, the fault of mechanical brake occurs and fault code "MBF" will be displayed.
42	Mechanical brake	

Control
mode

VF VFPG SVC FOCPG TQCPG FOCPM \quad Factory setting: 0.005
Settings $\quad 0.001 \sim 30.000 \mathrm{sec}$
[1] This parameter is used for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interferences that would result in error (except for the counter input) in the input of the digital terminals (FWD, REV and MI1~8). Under this condition, confirmation for this parameter could be improved effectively, but the response time will be somewhat delayed.

02-10 \wedge Digital Input Operation Direction
Control VF VFPG SVC FOCPG TQCPG FOCPM
Factory setting: 0

Settings $0 \sim 65535$

(1) This parameter is used to set the input signal level and it won't be affected by the SINK/SOURCE status.
[1] Bit0 is for FWD terminal, bit1 is for REV terminal and bit2 to bit9 is for MI1 to MI8.
[a] User can change terminal status by communicating.
For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward $+2^{\text {nd }}$ step speed command=1001(binary) $=9$ (Decimal). Only need to set Pr.02-10=9 by communication and it can forward with $2^{\text {nd }}$ step speed. It doesn't need to wire any multi-function terminal.

bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MI8	MI7	MI6	MI 5	MI 4	MI 3	MI 2	MI 1	REV	FWD

02-11 Multi-function Output 1 RA, RB, RC (Relay1)
Factory Setting: 11
02-12 Multi-function Output 2 MRA, MRC (Relay2)
Factory Setting: 1
02-13 Multi-function Output 3 (MO1)
02-14 Multi-function Output 4 (MO2)
02-15 Multi-function Output 5 (MO3) (need to use with EMVL-IODA01)
02-16 Multi-function Output 6 (MO4) (need to use with EMVL-IODA01)
02-17 Multi-function Output 7 (MO5) (need to use with EMVL-IODA01)
02-18 Multi-function Output 8 (MO6) (need to use with EMVL-IODA01)
02-19 Multi-function Output 9 (MO7) (need to use with EMVL-IODA01)
02-20 Multi-function Output 10 (MO8) (need to use with EMVL-IODA01)
02-21 Multi-function Output 11 (MO9) (need to use with EMVL-IODA01)
02-22 Multi-function Output 12 (MO10) (need to use with EMVL-IODA01)
Factory Setting: 0
Settings $0-41$

| Settings | Control Mode | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | VF | VFPG | SVC | FOCPG | TQCPG | FOCPM |
| 0: No function | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 1: Operation indication | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |

Chapter 4 Parameters Control Mode

Settings	Control Mode					
	VF	VFPG	SVC	FOCPG	TQCPG	FOCPM
2: Operation speed attained	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3: Desired frequency attained 1 (Pr.02-25)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
4: Desired frequency attained 2 (Pr.02-27)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
5: Zero speed (frequency command)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
6: Zero speed with stop (frequency command)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
7: Over torque (OT1) (Pr.06-05~06-07)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8: Over torque (OT2) (Pr.06-08~06-10)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9: Drive ready	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10: User-defined Low-voltage Detection (LV)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11: Malfunction indication	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12: Mechanical brake release (Pr.02-29, Pr.02-30)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13: Overheat (Pr.06-14)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14: Brake chopper signal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15: Motor-controlled magnetic contactor output	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16: Slip error (oSL)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
17: Malfunction indication 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18: Reserved						
19: Brake chopper output error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20: Warning output	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
21: Over voltage warning	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
22: Over-current stall prevention warning	\bigcirc	\bigcirc	\bigcirc			
23: Over-voltage stall prevention warning	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
24: Operation mode indication (Pr.00-15才0)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
25: Forward command	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
26: Reverse command	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
27: Output when current >= Pr.02-33	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
28: Output when current < Pr.02-33	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
29: Output when frequency >= Pr.02-34	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
30: Output when frequency < Pr.02-34	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
31-32: Reserved						
33: Zero speed (actual output frequency)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
34: Zero speed with Stop (actual output frequency)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
35: Fault output option 1 (Pr.06-22)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
36: Fault output option 2 (Pr.06-23)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
37: Fault output option 3 (Pr.06-24)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
38: Fault output option 4 (Pr.06-25)	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
39: Reserved						
40: Speed attained (including zero speed)	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
41: Reserved						

Settings	Functions	Descriptions
0	No Function	
1	AC Drive Operational	Active when there is an output from the drive or RUN command is ON.
2	Operation speed attained	Active when the AC motor drive reaches the output frequency setting.

Settings	Functions	Descriptions
3	Desired Frequency Attained 1 (Pr.02-25)	Active when the desired frequency (Pr.02-25) is attained.
4	Desired Frequency Attained 2 (Pr.02-27)	Active when the desired frequency (Pr.02-27) is attained.
5	Zero Speed (frequency command)	Active when frequency command $=0$. (the drive should be at RUN mode)
6	Zero Speed with Stop (frequency command)	Active when frequency command $=0$ or stop.
7	$\begin{aligned} & \text { Over Torque (OT1) } \\ & \text { (Pr.06-05~06-07) } \end{aligned}$	Active when detecting over-torque. Refer to Pr.06-05 (overtorque detection selection-OT1), Pr.06-06 (over-torque detection level-OT1) and Pr.06-07 (over-torque detection time-OT1).
8	$\begin{aligned} & \text { Over Torque (OT2) } \\ & \text { (Pr.06-08~06-10) } \end{aligned}$	Active when detecting over-torque. Refer to Pr.06-08 (overtorque detection selection-OT2), Pr.06-09 (over-torque detection level-OT2) and Pr.06-10 (over-torque detection time-OT2).
9	Drive Ready	Active when the drive is ON and no abnormality detected.
10	User-defined Lowvoltage Detection	Active when the DC Bus voltage is too low. (refer to Pr.06-00 low voltage level)
11	Malfunction Indication	Active when fault occurs (except Lv stop).
12	Mechanical Brake Release (Pr.02-29, Pr.02-30)	When drive runs after Pr.02-29, it will be ON. This function should be used with DC brake and it is recommended to use contact "b"(N.C).
13	Overheat (Pr.06-14)	Active when IGBT or heat sink overheats to prevent OH turn off the drive. (refer to Pr.06-14)
14	Brake Chopper Signal	The output will be activated when the drive needs help braking the load. A smooth deceleration is achieved by using this function. (refer to Pr.07-00)
15	Motor-controlled Magnetic Contactor Output	Active when the setting is set to 15.
16	Slip Error (oSL)	Active when the slip error is detected.
17	Malfunction indication 1	Activate after 10 ms when fault occurs (except Lv stop).
18	Reserved	
19	Brake Chopper Output Error	Active when the brake chopper error is detected.

Settings	Functions	Descriptions
20	Warning Output	Active when the warning is detected.
21	Over-voltage Warning	Active when the over-voltage is detected.
22	Over-current Stall Prevention Warning	Active when the over-current stall prevention is detected.
23	Over-voltage Stall prevention Warning	Active when the over-voltage stall prevention is detected.
24	Operation Mode Indication	Active when the operation command is controlled by external terminal. (Pr.00-15 $=0$)
25	Forward Command	Active when the operation direction is forward.
26	Reverse Command	Active when the operation direction is reverse.
27	Output when Current >= Pr.02-33	Active when current is >= Pr.02-33.
28	Output when Current < Pr.02-33	Active when current is < Pr.02-33.
29	Output when frequency $>=\text { Pr.02-34 }$	Active when frequency is >= Pr.02-34.
30	Output when Frequency < Pr.02-34	Active when frequency is < Pr.02-34.
31-32	Reserved	
33	Zero Speed (actual output frequency)	Active when the actual output frequency is 0 . (the drive should be at RUN mode)
34	Zero Speed with Stop (actual output frequency)	Active when the actual output frequency is 0 or Stop. (the drive should be at RUN mode)
35	Fault output option 1	Active when Pr.06-22 is ON.
36	Fault output option 2	Active when Pr.06-23 is ON.
37	Fault output option 3	Active when Pr.06-24 is ON.
38	Fault output option 4	Active when Pr.06-25 is ON.
39	Reserved	

Settings	Functions	Descriptions
40	Speed Attained (including zero speed)	Active when the output frequency reaches frequency setting.
41	Reserved	

02-23 \sim Multi-output Direction Unit:1

| Control
 mode | VF VFPG | SVC FOCPG TQCPG FOCPM | Factory setting: 0 |
| :--- | :--- | :--- | :--- | :--- |
| Settings $0 \sim 65535$ | | | |

[1] This parameter is bit setting. If the bit is 1 , the multi-function output terminal will be act with opposite direction. For example, if Pr.02-11 is set to 1 and forward bit is 0 , Relay 1 will be ON when the drive is running and OFF when the drive is stop.
[] The multi-function output terminals MO3~MO10 need to use with EMVL-IODA01.

Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MO10	MO9	MO8	MO7	MO6	MO5	MO4	MO3	MO2	MO1	MRA	RA

02-24 N Serial Start Signal Selection

| Control
 mode | VF VFPG | sVC FOCPG FOCPM | Factory setting: 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Settings | 0 | by FWD/REV | |
| | | 1 | by Enable | |

[1] This parameter is used to select serial start method of electromagnetic valve.

02-25	N Desired Frequency Attained 1				Unit: 0.01
Control mode	VF	VFPG		FOCPG FOCPM	Factory setting: 60.00/50.00
02-26	N The Width of the Desired Frequency Attained 1				Unit: 0.01
Control mode	VF	VFPG	SVC	FOCPG FOCPM	Factory setting: 2.00
02-27	\wedge Desired Frequency Attained 2				Unit: 0.01
Control mode	VF	VFPG		FOCPG FOCPM	Factory setting: 60.00/50.00
02-28	\wedge The Width of the Desired Frequency Attained 2				Unit: 0.01
Control mode	VF	VFPG	SVC	FOCPG FOCPM	Factory setting: 2.00
	Setting		~ 1	0.00Hz	

[1] Once output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr.02-11~Pr.02-22), this multi-function output terminal will be ON.

02-29 \quad Brake Release Delay Time when Elevator Starts
Unit:0.001

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :---: | :--- | :--- | :--- | :--- | Factory setting: 0.250

02-30 \quad Brake Engage Delay Time when Elevator Stops
Unit:0.001

Control
mode

VF VFPG SVC FOCPG TQCPG FOCPM
Settings $\quad 0.000 \sim 65.000 \mathrm{Sec}$

Chapter 4 Parameters | $1 / \pi \mathrm{TV}$

[a] When the AC motor drive runs after Pr.02-29 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be ON. This function should be used with DC brake.
[a] When the AC motor drive stops 12 after Pr.02-30 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be OFF.

| 02-31 | N Turn On Delay of Magnetic Contact between Drive and Motor | Unit:0.001 | |
| :---: | :---: | :---: | ---: | ---: |
| 02-32 | N Turn Off Delay of Magnetic Contact between Drive and Motor | Unit:0.001 | |
| Control
 mode | VF VFPG SVC | FOCPG TQCPG FOCPM | Factory setting: |

Settings $\quad 0.000 \sim 65.000 \mathrm{Sec}$
[a] After running, it is used with setting 40 of multifunction input terminal and settings 15 of multifunction output terminals. When multifunction output terminals is ON, the drive starts output after Pr.02-31 delay time. When drive stops output, multifunction output terminals will release after Pr.02-32 delay time.

(1) elevator starts running

| (2) electromagnetic valve is ON | start deceleration |
| :--- | :--- | :--- |
| (3) brake release | motor release |
| (7) start DC brake time during stopping | |
| (4) the end of DC brake time | (8) the end of DC brake time during stopping |
| at start-up | |

Chapter 4 Parameters | $1 / \pi>1 / 4$

02-33	N Output Current Level Setting for External Terminals	Unit:1		
Control mode	VF VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0
Settings				$0 \sim 100 \%$

[1] When output current is $>=$ Pr.02-33, it will activate multi-function output terminal (Pr.02-11 to Pr.02-22 is set to 27).
[a] When output current is < Pr.02-33, it will activate multi-function output terminal (Pr.02-11 to Pr.02-22 is set to 28).

| 02-34 | N Output Boundary for External Terminals | Unit:0.01 |
| :---: | :---: | :---: | :---: | ---: |
| Control
 mode | VF VFPG SVC FOCPG TQCPG FOCPM | Factory setting: 0.00 |
| | Settings $\quad 0.00 \sim \pm 120.00 \mathrm{~Hz}$ | |

[a] When output frequency is $>=02-34$, it will activate the multi-function terminal (Pr.02-11 to Pr.02-22 is set to 29).
[1] When output frequency is <02-34, it will activate the multi-function terminal (Pr.02-11 to Pr.0222 is set to 30).

02-35	N Detection Time of Mechanical Brake	Unit: 0.01			
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0.00

[1] When mechanical brake function (setting 42 of Pr.02-01~02-08) is not enabled within this setting time, it will display fault code 64 (MBF) mechanical brake error.

Group 3 Analog Input/Output Parameters
03-00 \quad Analog Input 1 (AUI1)
Factory Setting: 1
03-01 \sim Analog Input $2(\mathrm{ACI})$
Factory Setting: 0
03-02 \wedge Analog Input 3 (AUI2)
Factory Setting: 0

Settings	Control Mode					
	VF	VFPG	SVC	FOCPG	TQCPG	FOCPM
0 : No function	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1: Frequency command (torque limit under TQR control mode)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2: Torque command (torque limit under speed mode)					\bigcirc	
3: Torque compensation command	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4-5: Reserved						
6: P.T.C. thermistor input value	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7: Positive torque limit				\bigcirc		\bigcirc
8: Negative torque limit				\bigcirc		\bigcirc
9: Regenerative torque limit				\bigcirc		\bigcirc
10: Positive/negative torque limit				\bigcirc		\bigcirc
11: Preload Input						\bigcirc

[1] When it is frequency command or TQR speed limit, the corresponding value for $0 \sim \pm$ $10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0-$ max. output frequency $(\mathrm{Pr} .01-00)$
[1] When it is torque command or torque limit, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0-$ max. output torque (Pr.07-14).
[a] When it is torque compensation, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0-$ rated torque.

07-19: Source of torque offset
03-00~02: Analog input selections (AUI1/ACI/AUI2)
03-03~05: Analog input bias (AUI1/ACI/AUI2)
03-06~08: AUI1/ACI/AUI2 bias mode

03-03 NAnalog Input Bias 1 (AUI1)
Unit: 0.1

Control
mode

VF VFPG SVC FOCPG TQCPG FOCPM Factory setting: 0.0

Settings -100.0~100.0\%
[a] It is used to set the corresponding AUI1 voltage of the external analog input 0.

| Control
 mode | VF VFPG | SVC FOCPG TQCPG FOCPM | Factory setting: 0.0 |
| :--- | :--- | :--- | :--- | :--- |

Settings -100.0~100.0\%

II It is used to set the corresponding ACl voltage of the external analog input 0 .

03-05 N Analog Input Bias 1 (AUI2)
Unit: 0.1
$\begin{array}{llll}\begin{array}{c}\text { Control } \\ \text { mode }\end{array} & \text { VF VFPG SVC FOCPG TQCPG FOCPM } & \text { Factory setting: } 0.0\end{array}$

$$
\text { Settings } \quad-100.0 \sim 100.0 \%
$$

[1 It is used to set the corresponding AUI2 voltage of the external analog input 0.
[1 The relation between external input voltage/current and setting frequency is equal to $-10 \sim+10 \mathrm{~V}$ $(4-20 \mathrm{~mA})$ corresponds to $0-60 \mathrm{~Hz}$.

[1] In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1V to set the operating frequency.

03-09 N Analog Input Gain 1 (AUI1)
Unit: 0.1
Control VF VFPG SVC FOCPG TQCPG FOCPM Factory setting: 100.0 mode

03-10 \wedge Analog Input Gain 1 (ACI)
Unit: 0.1
Control VF VFPG SVC FOCPG TQCPG FOCPM Factory setting: 100.0
mode
03-11 \wedge Analog Input Gain 1 (AUI2)
Unit: 0.1
$\begin{array}{lll}\text { Control } \\ \text { VF } & \text { VFPG SVC FOCPG TQCPG FOCPM } & \text { Factory setting: } 100.0\end{array}$ mode Settings -500.0~500.0\%

Chapter 4 Parameters | [$1 / \sim 3 / 4$

[1] Parameters 03-03 to 03-11 are used when the source of frequency command is the analog voltage/current signal.

03-12	N Analog Input Delay Time (AUI1)	Unit: 0.01			
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0.01
03-13	N Analog Input Delay Time (ACI)	Unit: 0.01			
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0.01

03-14 \wedge Analog Input Delay Time (AUI2) Unit: 0.01
Control
mode VF VFPG SVC FOCPG TQCPG FOCPM Factory setting: 0.01

Settings $\quad 0.00$ to 2.00 sec
[a] Interferences commonly exist with analog signals, such as those entering AUI, ACI and AUI2. These interferences constantly affect the stability of analog control and using the Input Noise Filter will create a more stable system.
[a] If Pr. 03-14 is large, the control will be stable, yet the response to the input will be slow. If Pr.
$03-14$ is small, the control may be unstable, yet the response to the input will fast.

03-15 N Loss of the ACI Signal

| Control
 mode | VF VFPG | SVC FOCPG TQCPG FOCPM | Factory setting: 0 |
| :--- | :--- | :--- | :--- | :--- |

Settings	0	Disable
	1	Continue operation at the last frequency

2 Decelerate to stop
3 Stop immediately and display E.F.
(1) This parameter determines the behavior when $\mathrm{ACI}(4-20 \mathrm{~mA})$ is lost.

03-16 Reserved

03-17	\wedge Analog Output Selection 1	
03-20	\wedge Analog Output Selection 2	
		Factory Setting: 0
	Settings $\quad 0-20$	

Settings		Control Mode				
	VF	VFPG	SVC	FOCPG	TQCPG	FOCPM
0: Output frequency (Hz)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1: Frequency command (Hz)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2: Motor speed (RPM)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3: Output current (rms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4: Output voltage	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5: DC Bus Voltage	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6: Power factor	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7: Power	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8: Output torque	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9: AUI1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10: ACI	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11: AUI2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12: q-axis current	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13: q-axis feedback value	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14: d-axis current	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15: d-axis feedback value	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16: q-axis voltage	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
17: d-axis voltage	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18: Torque command	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19-20: Reserved						

03-18 N Analog Output Gain 1

03-21 N Analog Output Gain 2
Control VF VFPG SVC FOCPG TQCPG FOCPM Factory setting: 100.0
mode

$$
\text { Settings } \quad 0 \text { to } 200.0 \%
$$

[1 This parameter is set the corresponding voltage of the analog output 0 .

03-19	\sim Analog Output Value in REV Direction 1
03-22	\sim Analog Output Value in REV Direction 2

Control
mode VF VFPG SVC FOCPG TQCPG FOCPM
Settings $0 \quad$ Absolute value in REV direction

1 Output OV in REV direction
2 Enable output voltage in REV direction

Selection for the analog output direction

04-00	NZero Step Speed Frequency	Unit: 0.01
04-01	N1st Step Speed Frequency	Unit: 0.01
04-02	N 2nd Step Speed Frequency	Unit: 0.01
04-03	\wedge 3rd Step Speed Frequency	Unit: 0.01
04-04	N 4th Step Speed Frequency	Unit: 0.01
04-05	^ 5th Step Speed Frequency	Unit: 0.01
04-06	\sim 6th Step Speed Frequency	Unit: 0.01
04-07	N7th Step Speed Frequency	Unit: 0.01
04-08	\wedge 8th Step Speed Frequency	Unit: 0.01
04-09	N 9th Step Speed Frequency	Unit: 0.01
04-10	\sim 10th Step Speed Frequency	Unit: 0.01
04-11	N11th Step Speed Frequency	Unit: 0.01
04-12	N 12th Step Speed Frequency	Unit: 0.01
04-13	\sim 13th Step Speed Frequency	Unit: 0.01
04-14	N14th Step Speed Frequency	Unit: 0.01
04-15	N15th Step Speed Frequency	Unit: 0.01
Control mode	VF VFPG SVC FOCPG FOCPM	Factory setting: 0.00
	Settings $\quad 0.00$ to 120.00 Hz	

[1] The Multi-Function Input Terminals (refer to Pr.02-01 to 02-08) are used to select one of the AC motor drive Multi-step speeds. The speeds (frequencies) are determined by Pr.04-00 to $04-15$ as shown above.

Group 5 IM Motor Parameters
05-00 Motor Auto Tuning

Control mode	VF		
	Settings	0	No function
		1	Rolling test (Rs, Rr, Lm, Lx, no-load current)
		2	Static Test

[al Starting auto tuning by pressing RUN key and it will write the measure value into Pr.05-05 to Pr.05-09 (Rs, Rr, Lm, Lx, no-load current).
[a] The steps to AUTO-Tuning are: (when setting to 1)

1. Make sure that all the parameters are set to factory settings and the motor wiring is correct.
2. Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor. It is recommended to set to 2 if the motor can't separate from the load.
3. Fill in Pr.01-02, Pr.01-01, Pr.05-01, Pr.05-02, Pr.05-03 and Pr.05-04 with correct values. Refer to motor capacity to set accel./decel. time.
4. When Pr.05-00 is set to 1 , the AC motor drive will execute auto-tuning immediately after receiving a "RUN" command. (NOTE: the motor will run!)
5. After executing, please check if all values are filled in Pr.05-05 to Pr.05-09.
6. Equivalent circuit

Equivalent circuit for VFD-VL series
(1) If Pr.05-00 is set to 2, it needs to input Pr.05-05.

П, оㅜㄹ

1. In torque/vector control mode, it is not recommended to have motors run in parallel.
2. It is not recommended to use torque/vector control mode if motor rated power exceeds the rated power of the AC motor drive.
3. The no-load current is usually $20 \sim 50 \% \mathrm{X}$ rated current.

Chapter 4 Parameters | [$\mathrm{V} \boldsymbol{\sim} / \mathrm{V} / \mathrm{L}$

4. The rated speed can't be larger or equal to 120f/p. (f: output frequency Pr.01-01, p: Number of Motor Poles Pr.05-04)

05-01 Full-load Current of Motor
Control
mode VF VFPG SVC FOCPG TQCPG Factory setting: \#.\#\#
Settings $\quad 40$ to 120%
[1 This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current.

Example: if the rated current for 7.5 hp (5.5 kW) models is 25 A and the factory setting is 22.5 A . In this way, the current range will be from 10A (25*40\%) to 30A (25*120\%).

| 05-02 | Rated Power of Motor | Unit: 0.01 |
| :---: | :---: | ---: | ---: |
| Control
 mode | SVC FOCPG TQCPG | Factory setting: \#.\#\# |
| Settings $\quad 0.00$ to 655.35 kW | | Factory Setting: \#.\#\# |

[1] It is used to set rated power of the motor. The factory setting is the power of the drive.

05-03	Rated Speed of Motor (rpm)	Unit: 1		
Control mode	VFPG	sVC	FOCPG TQCPG	Factory setting: 1710
	Settings	0 to 65535 rpm		

[al It is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.

05-04 Number of Motor Poles

Control mode	VF VFPG	SVC	FOCPG TQCPG	Factory setting: 4
Settings 2 to 48				

[1] It is used to set the number of motor poles (must be an even number).

05-05	No-load Current of Motor	Unit: Amp	
Control mode	VFPG SvC	FOCPG TQCPG	Factory setting: \#.\#\#
	Settings $\quad 0$ to 100%		

[a] The factory setting is $40 \% \mathrm{X}$ rated current.

Control mode
SVC

05-10	\sim Torque Compensation Time Constant	Unit: 0.001
Control mode	svc	Factory setting: 0.020
	Settings	0.001 to 10.000 sec

Settings $\quad 0.001$ to 10.000 sec
[d Setting Pr.05-10 and Pr.05-11 change the response time for the compensation.
[a] When Pr.05-10 and Pr.05-11 are set to 10 seconds, its response time for the compensation will be the longest. But if the settings are too short, unstable system may occur.

05-12 \sim Torque Compensation Gain
Unit: 1

Control mode	VF VFPG	Factory setting: 0
	Settings 0 to10	

① This parameter may be set so that the AC motor drive will increase its voltage output to obtain a higher torque.

| 05-13 | N Slip Compensation Gain | Unit: 0.01 |
| :--- | :--- | :--- | ---: |
| Control
 mode | sVc VFPG SVC | Factory setting: 0.00 |
| | Settings $\quad 0.00$ to10.00 | |

Chapter 4 Parameters

[a] When the asynchronous motor is driven by the drive, the load and slip will be increased. This parameter can be used to correct frequency and lower the slip to make the motor can run near the synchronous speed under rated current. When the output current is larger than the motor no-load current, the drive will compensate the frequency by Pr.05-13 setting. If the actual speed is slower than expectation, please increase the setting and vice versa.
(1) It is only valid in SVC mode.

[a] Pr.05-14 to Pr.05-16 are used to set allowable slip level/time and over slip treatment when the drive is running.

| 05-17 | N Hunting Gain | Unit: 1 |
| :---: | :---: | :---: | ---: |
| Control
 mode | VF VFPG SVC | Factory setting: 2000 |
| | Settings $\quad 0$ to 10000 (0: disable) | |

[1] The motor will have current wave motion in some specific area. It can improve this situation by setting this parameter. (When it is high frequency or run with PG, Pr.05-17 can be set to 0 . when the current wave motion happens in the low frequency, please increase Pr.05-17.)

| 05-18
 Control
 mode
 Accumulative Motor Operation Time (Min.) VFPG SVC FOCPG TQCPG | Factory setting: 00 | | |
| :---: | :---: | :---: | :---: | ---: |
| Settings 00 to1439 | | | |

05-19	Accumulative Motor Operation Time (Day)	Unit: 1		
Control mode	VF VFPG sVc FOCPG TQCPG	Factory setting: 00		
Settings 00 to 65535				

[a] Pr. 05-18 and Pr.05-19 are used to record the motor operation time. They can be cleared by setting to 00 and time which is less than 60 seconds will not be recorded.
05-20 N Core Loss Compensation

Group 6 Protection Parameters
06-00 Low Voltage Level Unit: 0.1

Control mode	VF	VFPG \quad SVC	FOCPG TQCPG FOCPM	
	Settings	230 V series	$160.0 \sim 220.0 \mathrm{Vdc}$	Factory Setting: 180.0
		460 V series	$320.0 \sim 440.0 \mathrm{Vdc}$	Factory Setting: 360.0

Id It is used to set the Lv level.

06-01 \sim Phase-loss Protection

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :--- | :--- | :--- | :--- | :--- | Factory setting: 29.

[a] It is used to set the phase-loss treatment. The phase-loss will effect driver's control characteristic and life.

06-02 N Over-Current Stall Prevention during Acceleration
Unit: 1

| Control
 mode | VF VFPG SVC | Factory setting: 00 |
| :---: | :---: | :---: | :---: |
| | Settings $\quad 00 \sim 250 \%(00$: disable) | |

Ild During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06-02 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.

06-02
Over-Current
Detection \rightarrow
Level

actual acceleration time when over-current stall prevention is enabled
06-03 Ner-current Stall Prevention during Operation Unit: 1

| Control
 mode | VF | VFPG | sVC |
| :--- | :--- | :--- | :--- | Factory setting: 00

Settings 00 to 250% (00: disable)

[0] If the output current exceeds the setting specified in Pr.06-03 when the drive is operating, the drive will decrease its output frequency by Pr.06-04 setting to prevent the motor stall. If the output current is lower than the setting specified in Pr.06-03, the drive will accelerate (by Pr.06-04) again to catch up with the set frequency command value.

over-current stall prevention during operation

06-04 \sim Accel./Decel. Time Selection of Stall Prevention at constant speed

| Control
 mode | VF VFPG SVC | Factory setting: 0 |
| :--- | :--- | :--- | :--- |

Settings	0	by current accel/decel time
	1	by the 1 st accel/decel time
2	by the 2 nd accel/decel time	
3	by the 3 rd accel/decel time	
	4	by the 4 th accel/decel time
5	by auto accel/decel time	

[al It is used to set the accel./decel. time selection when stall prevention occurs at constant speed.

06-05 N Over-torque Detection Selection (OT1)

Control mode	VF VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0
Settings	0	Over-Torque detection disabled. Over-torque detection during constant speed operation, continue to operate after detection		
	2	Over-torque detection during constant speed operation, stop operation after detection		
3	Over-torque detection during operation, continue to operate after detection Over-torque detection during operation, stop operation after detection			

06-06	N Over-torque Detection Level (OT1)						Unit: 1
Control mode	vF	VFPG	svc	FOCPG T	TQCPG	FOCPM	Factory setting: 150
	Settings		10 to 250\%				
06-07	N Over-torque Detection Time (OT1)						Unit: 0.1
Control mode	VF	VFPG		FOCPG T	TQCPG	FOCPM	Factory setting: 0.1
	Settings		0.0 to 60.0 sec				

06-08 N Over-torque Detection Selection (OT2)

| Control | VF VFPG SVC FOCPG TQCPG FOCPM | Factory setting: 0 |
| :--- | :--- | :--- | :--- | :--- |

Settings	0	Over-Torque detection disabled. Over-torque detection during constant speed operation, continue to operate after detection
	2	Over-torque detection during constant speed operation, stop operation after detection
	3	Over-torque detection during operation, continue to operate after detection
	4	Over-torque detection during operation, stop operation after detection

06-09 \quad N Over-torque Detection Level (OT2)
Unit: 1

| Control
 mode | VF VFPG SVC FOCPG TQCPG FOCPM | Factory setting: 150 |
| :---: | :---: | :---: | :---: | :---: |
| Settings 10 to 250% | | |

Control VF VFPG SVC FOCPG TQCPG FOCPM Factory setting: 0.1
mode
Settings $\quad 0.0$ to 60.0 sec
[1 Pr.06-05 and Pr.06-08 determine the operation mode of the drive after the over-torque is detected via the following method: if the output current exceeds the over-torque detection level (Pr.06-06) and also exceeds the Pr.06-07 Over-Torque Detection Time, the fault code "OT1/OT2" is displayed. If a Multi-Functional Output Terminal is to over-torque detection, the output is on. Please refer to Pr.02-11~02-22 for details.

06-11 N Current Limit
Unit: 1
Control FOCPG TQCPG
mode
Settings 0 to 250\%
[1] It is used to set the current limit.

06-12 Electronic Thermal Relay Selection

[1 It is used to prevent self-cooled motor overheats under low speed. User can use electrical thermal relay to limit driver's output power.

06-13 N Electronic Thermal Characteristic
Unit: 0.1

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :---: | :--- | :--- | :--- | :--- | Factory setting: 60.0 mode Settings $\quad 30.0$ to 600.0 sec

Chapter 4 Parameters

[a] The parameter is set by the output frequency, current and operation time of the drive for activating the I^{2} t electronic thermal protection function. The function will be activated for the 150% * setting current for the setting of Pr.06-13.

06-14	N Heat Sink Over-heat (OH) Warning	Unit: 0.1			
Control mode	VF	VFPG	SvC	FOCPG TQCPG	FOCPM

Settings $\quad 0.0$ to $110.0^{\circ} \mathrm{C}$
06-15 \sim Stall Prevention Limit Level \quad Unit: 1

| Control
 mode | VF VFPG SVC | Factory setting: 50 |
| :--- | :--- | :--- | :--- |

Settings 0 to 100\% (refer to Pr.06-02, Pr.06-03)
(1) When the operating frequency is larger than Pr.01-01, Pr06-02=150\%, Pr. 06-03=100\% and Pr. $06-15=80 \%$:

Stall Prevention Level during acceleration $=06-02 \times 06-15=150 \times 80 \%=120 \%$.
Stall Prevention Level at constant speed $=06-03 \times 06-15=100 \times 80 \%=80 \%$.

29 Reserved
30 Memory write-in error (cF1)
31 Memory read-out error (cF2)
32 Isum current detection error (cd0)
33 U-phase current detection error (cd1)
$34 \quad$ V-phase current detection error (cd2)
35 W-phase current detection error (cd3)
36 Clamp current detection error (HdO)
37 Over-current detection error (Hd1)
38 Over-voltage detection error (Hd2)
39 Ground current detection error (Hd3)
40 Auto tuning error (AuE)
41 PID feedback loss (AFE)
42 PG feedback error (PGF1)
43 PG feedback loss (PGF2)
44 PG feedback stall (PGF3)
45 PG slip error (PGF4)
46 PG ref input error (PGr1)
47 PG ref loss (PGr2)
48 Analog current input error (ACE)
49 External fault input (EF)
50 Emergency stop (EF1)
51 Reserved
52 Password error (PcodE)
53 Reserved
54 Communication error (cE1)
55 Communication error (cE2)
56 Communication error (cE3)
57 Communication error (cE4)
58 Communication Time-out (cE10)

59
60 Brake chopper error (bF)
61-62 Reserved
63 Safety loop error (Sry)
64 Mechanical brake error (MBF)
65 PGF5 hardware error
[1] It will record when the fault occurs and force stopping. For the Lv, it will record when it is operation, or it will warn without record.

06-30	N Setting Method of Fault Output				
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0
	Settings	0	By settings of Pr.06-22~06-25		
		1	By the binary setting		

[al It is used with the settings 35~38 of Pr.02-11~02-22 (Multi-function Output). The fault output selection 1~4 corresponds to Bit 0~3.
[1] This parameter provides two setting methods for the fault output: setting 0 : it is set by the settings of Pr.06-22~Pr.06-25; setting 1: it is set by the binary setting and please refer to the following example for details.

Example:
Assume that
Pr.02-15 (Multi-function Output 5 (MO3)) is set to 35 Fault output option 1 (Pr.06-22).
Pr.02-17 (Multi-function Output 7 (MO5)) is set to 36 Fault output option 2 (Pr.06-23).
Pr.02-19 (Multi-function Output 9 (MO7)) is set to 37 Fault output option 3 (Pr.06-24).
Pr.02-21 (Multi-function Output 11 (MO9)) is set to 38 Fault output option 4 (Pr.06-25).
Assume that external faults output with the following signal: $M O 3=1, M O 5=1, M O 7=0$ and
MO9=1. The corresponding Bit 3~0 is 1011.

Bit 3	Bit 2	Bit 1	Bit 0	Fault code
-	-	-	-	0: No fault
0	0	0	1	1: Over-current during acceleration (ocA)
				2: Over-current during deceleration (ocd)
				3: Over-current during constant speed (ocn)
				4: Ground fault (GFF)
				5: IGBT short-circuit (occ)
				6: Over-curent at stop (ocS)
0	0	1	0	7: Over-voltage during acceleration (ovA)
				8: Over-voltage during deceleration (ovd)

Bit 3	Bit 2	Bit 1	Bit 0	Fault code
				9: Over-voltage during constant speed (ovn)
				10: Over-voltage at stop (ovS)
0	0	1	1	11: Low-voltage during acceleration (LvA)
				12: Low-voltage during deceleration (Lvd)
				13: Low-voltage during constant speed (Lvn)
				14: Low-voltage at stop (LvS)
				15: Phase loss (PHL)
0	1	0	0	16: IGBT heat sink over-heat (oH 1)
				17: Heat sink over-heat (oH2)(for 40HP above)
				18: TH1 open loop error (tH1o)
				19: TH2 open loop error (tH2o)
1	0	0	0	20: Fan error signal output
0	1	0	1	21: over-load (oL) (150\% 1Min)
0	1	1	0	22: Motor 1 over-load (EoL1)
				24: Motor PTC overheat (oH3)
0	1	1	1	26: over-torque 1 (ot1)
				27: over-torque 1 (ot2)
1	0	0	0	30: Memory write-in error (cF1)
				31: Memory read-out error (cF2)
				32: Isum current detection error (cd0)
				33: U-phase current detection error (cd1)
				34: V-phase current detection error (cd2)
				35: W-phase current detection error (cd3)
				36: Clamp current detection error (Hd0)
				37: Over-current detection error (Hd1)
				38: Over-voltage detection error (Hd2)
				39: Ground current detection error (Hd3)
1	0	0	1	40: Auto tuning error (AuE)
1	0	1	0	41: PID feedback loss (AFE)
				42: PG feedback error (PGF1)
				43: PG feedback loss (PGF2)
0	1	1	1	44: PG feedback stall (PGF3)
1	0	1	0	45: PG slip error (PGF4)
				46: PG ref input error (PGr1)
				47: PG ref loss (PGr2)
				48: Analog current input error (ACE)
1	0	1	1	49: External fault input (EF)
				50: Emergency stop (EF1)
1	0	0	1	52: Password error (PcodE)
1	1	0	0	54: Communication error (cE1)
				55: Communication error (CE2)
				56: Communication error (cE3)
				57: Communication error (cE4)
				58: Communication Time-out (cE10)
				59: PU time-out (cP10)
1	0	0	0	60: Brake chopper error (bF)
1	0	1	1	63: Safety loop error (Sry)
				64: Mechanical brake error (MBF)
1	0	0	0	65: PGF5 hardware error

Control mode	VF VFPG SVC FOCPG TQCPG FOCPM	Factory setting: 0

[1] These parameters can be used with multi-function output (set Pr.02-11 to Pr.02-22 to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals will be activated (It needs to convert binary value to decimal value to fill in Pr.06-22 to Pr.06-25).

Fault code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault							
1: Over-current during acceleration (ocA)	\bigcirc						
2: Over-current during deceleration (ocd)	\bigcirc						
3: Over-current during constant speed (ocn)	\bigcirc						
4: Ground fault (GFF)						\bigcirc	
5: IGBT short-circuit (occ)	\bigcirc						
6: Over-curent at stop (ocS)	\bigcirc						
7: Over-voltage during acceleration (ovA)		\bigcirc					
8: Over-voltage during deceleration (ovd)		\bigcirc					
9: Over-voltage during constant speed (ovn)		\bigcirc					
10: Over-voltage at stop (ovS)		\bigcirc					
11: Low-voltage during acceleration (LvA)		\bigcirc					
12: Low-voltage during deceleration (Lvd)		\bigcirc					
13: Low-voltage during constant speed (Lvn)		-					
14: Low-voltage at stop (LvS)		\bigcirc					

Fault code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
15: Phase loss (PHL)						\bigcirc	
16: IGBT heat sink over-heat (OH 1)			\bigcirc				
17: Heat sink over-heat (oH 2)(for 40HP above)			\bigcirc				
18: TH1 open loop error (tH1o)			-				
19: TH2 open loop error (tH2o)			\bigcirc				
20: Fan error signal output						\bigcirc	
21: over-load (oL) (150\% 1Min)			\bigcirc				
22: Motor 1 over-load (EoL1)			-				
23: Reserved							
24: Motor PTC overheat (oH3)			\bigcirc				
25: Reserved							
26: over-torque 1 (ot1)			\bigcirc				
27: over-torque 1 (ot2)			\bigcirc				
28: Reserved							
29: Reserved							
30: Memory write-in error (cF1)				\bigcirc			
31: Memory read-out error (cF2)				\bigcirc			
32: Isum current detection error (cd0)				\bigcirc			
33: U-phase current detection error (cd1)				\bigcirc			
34: V-phase current detection error (cd2)				\bigcirc			
35: W-phase current detection error (cd3)				\bigcirc			
36: Clamp current detection error (HdO)				\bigcirc			
37: Over-current detection error (Hd1)				\bigcirc			
38: Over-voltage detection error (Hd2)				\bigcirc			

Chapter 4 Parameters

Chapter 4 Parameters \| [/ \rightarrow l							
Fault code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
39: Ground current detection error (Hd3)				\bigcirc			
40: Auto tuning error (AuE)				\bigcirc			
41: PID feedback loss (AFE)					\bigcirc		
42: PG feedback error (PGF1)					\bigcirc		
43: PG feedback loss (PGF2)					\bigcirc		
44: PG feedback stall (PGF3)					\bigcirc		
45: PG slip error (PGF4)					\bigcirc		
46: PG ref input error (PGr1)					\bigcirc		
47: PG ref loss (PGr2)						\bigcirc	
48: Analog current input error (ACE)						\bigcirc	
49: External fault input (EF)						\bigcirc	
50: Emergency stop (EF1)						\bigcirc	
51: Reserved							
52: Password error (PcodE)				\bigcirc			
53: Reserved							
54: Communication error (cE1)							
55: Communication error (cE2)							
56: Communication error (cE3)							
57: Communication error (cE4)							
58: Communication Time-out (cE10)							
59: PU time-out (cP10)							
60: Brake chopper error (bF)						\bigcirc	
61-62: Reserved							
63: Safety loop error (Sry)				\bigcirc			
64: Mechanical brake error (MBF)						\bigcirc	
65: PGF5 hardware error				\bigcirc			

06-26 ^ PTC (Positive Temperature Coefficient) Detection Selection

Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory setting: 0
	Settings	0	Warn and keep operating		
		1	Warn and ramp to stop		

(1) It is used to set the treatment after detecting PTC.

06-27	NPTC Level		Unit: 0.1	
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM

Settings 0.0 to 100.0%
(1) It is used to set the PTC level, and the corresponding value for 100% is max. analog input value.

06-28	\sim Filter Time for PTC Detection	Unit: 0.01

| Control
 mode | VF VFPG | SVC FOCPG TQCPG FOCPM | Factory setting: 0.20 |
| :--- | :---: | :---: | :---: | :---: |
| Settings 0.00 to 10.00 sec | | | |

06-29	EPS Voltage	Unit: 0.1

Control mode	VF VFPG SVC FOCPG TQCPG FOCPM		
	Settings	$48.0 \sim 375.0 \mathrm{Vdc}$	Factory setting: 48.0
	$96.0 \sim 750.0 \mathrm{Vdc}$	Factory setting: 96.0	

It It is used with the setting 43 (EPS function) of Pr.02-01~02-08 (Multi-Function Input Command).

Group 7 Special Parameters

07-03 N DC Brake Time during Start-up
Unit: 0.1

Control mode	VF	VFPG	SVC	FOCPG FOCPM	Factory Setting: 0.0

Settings 0.0 to 60.0 sec
[1] This parameter determines the duration of the DC Brake current after a RUN command.

07-04 \wedge DC Brake Time during Stopping
Unit: 0.1

| Control
 mode | VF VFPG SVC FOCPG FOCPM | Factory Setting: 0.0 | |
| :---: | :---: | :---: | :---: | :---: |
| Settings 0.0 to 60.0 sec | | | |

① This parameter determines the duration of the DC Brake current during stopping.
Control VF VFPG SVC FOCPG Factory Setting: 0.00
[1] This parameter determines the frequency when DC Brake will begin during deceleration. When the setting is less than start frequency (Pr.01-09), start-point for DC brake will begin from the min. frequency.

07-06 DC Brake Proportional Gain Unit: 1

| Control
 mode | VF VFPG SVC | Factory Setting: 50 |
| :---: | :---: | :---: | :---: |
| | Settings 1 to 500 Hz | |

[al It is used to set the output voltage gain when DC brake.

07-07	N Dwell Time at Accel.	Unit: 0.01		
Control mode	VF	VFPG	SVC	FOCPG FOCPM

Settings $\quad 0.00$ to 600.00 sec

07-08 \wedge Dwell Frequency at Accel. Unit: 0.01

| Control
 mode | VF VFPG SVC FOCPG FOCPM | Factory Setting: 0.00 |
| :--- | :--- | :--- | :--- |

Settings $\quad 0.00$ to 120.00 Hz
07-09 N Dwell Time at Decel. Unit: 0.01

Control mode	VF	VFPG	SVC FOCPG FOCPM	Factory Setting: 0.00

Settings $\quad 0.00$ to 600.00 sec
07-10 \sim Dwell Frequency at Decel. Unit: 0.01

| Control
 mode | VF VFPG SVC FOCPG FOCPM | Factory Setting: 0.00 |
| :--- | :--- | :--- | :--- | :--- |

Settings $\quad 0.00$ to 120.00 Hz
[a] In the heavy load situation, Dwell can make stable output frequency temporarily.
[d Pr.07-07 to Pr.07-10 are for heavy load to prevent OV or OC occurs.
Frequency

Dwell at accel./decel.

07-11	N Fan Control				
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory Setting: 2
	Settings	0	Fan always ON		
		1	1 minute after AC motor drive stops, fan will be OFF		
		2	AC motor drive runs and fan ON, AC motor drive stops and fan OFF		
		3	Fan ON to run when preliminary heat sink temperature attained		

[] This parameter is used for the fan control.
[a] When setting to 3 , fan will start to run until temperature is less than $40^{\circ} \mathrm{C}$ if temperature exceeds $40^{\circ} \mathrm{C}$.

07-12 \sim Torque Command
Unit: 0.1
Control
mode TQCPG

Settings $\quad-100.0$ to 100.0% (Pr. 07-14 setting=100\%)
dal This parameter is torque command. When Pr.07-14 is 250% and $\operatorname{Pr} .07-12$ is 100%, the actual torque command $=250 \times 100 \% \times$ motor rated torque .

07-13 \wedge Torque Command Source

Control mode	TQCPG			Factory Setting: 2
	Settings	0	Digital keypad	
		1	RS485 serial communication (RJ-11)	
		2	Analog signal (Pr.03-00)	

Chapter 4 Parameters | [$1 / \sim 3 / \mathrm{Cl}$

[a] This parameter is torque command source and the torque command is in Pr.07-12.

07-14 Maximum Torque Command Unit: 1

| Control
 mode | VF VFPG SVC FOCPG TQCPG FOCPM | Factory Setting: 100 |
| :--- | :--- | :--- | :--- | :--- |

Settings 0 to 500%
[a] This parameter is for the max. torque command (motor rated torque is 100%).

07-15 \quad ~ Filter Time of Torque Command
Unit: 0.001
Control TQCPG mode Settings $\quad 0.000$ to 1.000 sec
[1] When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control maybe unstable. User can adjust the setting by the control and response situation.

07-16 Speed Limit Selection
Control
mode TQCPG
Factory Setting: 0
Settings $0 \quad$ By Pr.07-17 and Pr.07-18
1 Frequency command source (Pr.00-14)

07-17	N Torque Mode+Speed Limit	Unit: 1	
07-18	N Torque Mode-Speed Limit	Unit: 1	
Control mode	TQCPG	Factory Setting: 10	
Settings $\quad 0$ to 120%			

[1] These parameters are used in the torque mode to limit the running direction and opposite direction. (Pr.01-00 max. output frequency=100\%)

07-19 N Source of Torque Offset
Control SVC FOCPG TQCPG FOCPM Factory Setting: 0 mode

Settings	0	Disable
	1	Analog input (Pr.03-00)
	2	Torque offset setting (Pr.07-20)
	3	Control by external terminal (by Pr.07-21 to Pr.07-23)

(1) This parameter is the source of torque offset.
[d When it is set to 3 , the source of torque offset will decide to Pr.07-21, Pr.07-22 and Pr.07-23 by the multi-function input terminals setting (19, 20 or 21).

02-01~02-08 is set to 19	02-01~02-08 is set to 20	02-01~02-08 is set to 21	Torque offset
OFF	OFF	OFF	None
OFF	OFF	ON	$07-25$
OFF	ON	OFF	$07-24$
OFF	ON	ON	$07-25+07-24$
ON	OFF	OFF	$07-23$
ON	OFF	ON	$07-23+07-25$
ON	ON	OFF	$07-23+07-24$
ON	ON	ON	$07-23+07-24+07-25$

07-20 \wedge Torque Offset Setting
Unit: 0.1

Control mode	SVC FOCPG TQCPG FOCPM	Factory Setting: 0.0	
	Settings	0.0 to 100.0%	

[al This parameter is torque offset. The motor rated torque is 100%.

07-21 \wedge High Torque Offset
Unit: 0.1
Control sVC FOCPG TQCPG FOCPM
Settings 0.0 to 100.0%

07-22 N Middle Torque Offset
Unit: 0.1

| Control
 mode | SVC FOCPG TQCPG FOCPM | Factory Setting: 20.0 |
| :---: | :---: | :---: | :---: |

Settings 0.0 to 100.0%
Control
mode SVC FOCPG TQCPG FOCPM Factory Setting: 10.0
Settings 0.0 to 100.0%
[a] When it is set to 3 , the source of torque offset will decide to Pr.07-21, Pr.07-22 and Pr.07-23 by the multi-function input terminals setting (19, 20 or 21). The motor rated torque is 100%.

07-24	N Forward Motor Torque Limit	Unit: 1
07-25	N Forward Regenerative Torque Limit	Unit: 1
07-26	\wedge Reverse Motor Torque Limit	Unit: 1
07-27	\wedge Reverse Regenerative Torque Limit	Unit: 1
Control mode	FOCPG TQCPG FOCPM	Factory Setting: 200
	Settings 0 to 500\%	

The motor rated torque is 100%. The settings for $\operatorname{Pr} .07-24$ to $\operatorname{Pr} .07-27$ will compare with Pr.03$00=5,6,7,8$. The minimum of the comparison result will be torque limit.

07-28 \sim Emergency Stop (EF) \& Forced Stop Selection

Control mode	VF \quad VFPG	SVC \quad FOCPG TQCPG FOCPM	Factory Setting: 0
	Settings	0	Coast to stop
		By deceleration Time 1	
		3	By deceleration Time 2
	4	By deceleration Time 3	
	5	By Pr.01-31	

[al When the multi-function input terminal is set to 10 or 14 and it is ON , the AC motor drive will be operated by Pr.07-28.

07-29 \wedge Time for Decreasing Torque at Stop Unit: 0.001
Control FOCPG TQCPG FOCPM
Factory Setting: 0.000
mode
Settings $\quad 0.000$ to 1.000 sec
[1] It is used to set the time for decreasing torque to 0\%.

$$
\frac{\mathrm{i}}{00-01} \times \frac{100 \%}{300 \%} \times(07-29)=\mathrm{t}
$$

Group 8 PM Motor Parameters
08-00 Motor Auto Tuning

Control mode	FOCPM		Factory setting: 0
	Settings	0	No function
		1	Only for the unloaded motor, auto measure the angle between magnetic field and PG origin (08-09)
		2	For PM motor parameters
		3	Auto measure the angle between magnetic field and PG origin (08-09)

[a] For setting 1: It can auto measure the angle between magnetic field and PG origin. Please notice the following items when measuring:

1. Please unload before tuning.
2. If brake is controlled by drive, the drive will act by the normal operation to finish tuning after wiring and setting brake control parameters.
3. If brake is controlled by the host controller, it needs to make sure that brake is in release state before tuning.

For setting 2: Starting auto tuning by pressing RUN key and it will write the measure value into Pr.08-05 to Pr.08-07 (Rs, Lq).

The steps to AUTO-Tuning are: (Dynamic measure)

1. Make sure that all the parameters are set to factory settings and the motor wiring is correct.
2. Motor: Fill in Pr.08-01, Pr.08-02, Pr.08-03 and Pr.08-04 with correct values. Refer to motor capacity to set accel./decel. time.
3. When Pr.08-00 is set to 2 , the AC motor drive will execute auto-tuning immediately after receiving a "RUN" command. (NOTE: the motor will run! The shaft needs to be locked with external force.)
4. After executing, please check if all values are filled in Pr.08-05 and Pr.08-07.
(1) For setting 3: It can auto measure the angle between magnetic field and PG origin. Please notice the following items when measuring:
5. It can be loaded motor or unloaded motor before tuning.
6. If brake is controlled by drive, the drive will act by the normal operation to finish tuning after wiring and setting brake control parameters.
7. If brake is controlled by the host controller, it needs to make sure that brake is in release state before tuning.

- The rated speed can't be larger or equal to 120f/p.
- Please notice that if the electromagnetic valve and brake is not controlled by the AC motor drive, please release it by manual.
- It is recommended to set Pr.08-00 to 1 (unloaded motor) for the accurate calculation. If it needs to execute this function with loaded motor, please balance the carriage before execution.
- if it doesn't allow balancing the carriage in the measured environment, it can set Pr.08$00=3$ for executing this function. It can execute this function with loaded motor by setting Pr.08-00=3. It will have a difference of $15 \sim 30^{\circ}$ by the different encoder type.
- It will display the warning message "Auto tuning" on the digital keypad during measuring until the measure is finished. Then, the result will be saved into Pr.08-09.

■ It will display "Auto Tuning Err" on the keypad when stopping by the fault of the AC motor drive or human factor to show the failed detection. At this moment, please check the connections of the wirings of the AC motor drives. If it displays "PG Fbk Error" on the digital keypad, please change the setting of Pr.10-02 (if it is set to 1, please change it to 2). If it displays "PG Fbk Loss" on the digital keypad, please check the feedback of Zphase pulse.

08-01	Full-load Current of Motor	
Control mode	FOCPM	Factory setting: \#.\#\#
	Settings $\quad 40$ to 120%	

(1) This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current.

Example: if the rated current for 7.5 hp (5.5 kW) models is 25 A and the factory setting is 22.5 A . In this way, the current range will be from 10A ($25^{*} 40 \%$) to $30 \mathrm{~A}\left(25^{*} 120 \%\right)$.
Settings $\quad 0.00$ to 655.35 kW
[1] It is used to set rated power of the motor. The factory setting is the power of the drive.

08-03	\sim Rated Speed of Motor (rpm)	Unit: 1
Control mode	FOCPM	Factory setting: 1710

Settings 0 to 65535
[al It is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.

08-04	Number of Motor Poles		
Control mode	FOCPM		Factory setting: 4
	Settings	2 to 96	

(1) It is used to set the number of motor poles (must be an even number).

08-05 Rs of Motor Unit: 0.001

Control mode	FOCPM	Factory setting: 0.000
	Settings	$0.000 \sim 65.535 \Omega$

08-06	Ld of Motor	Unit: 0.1
Control mode	FOCPM	Factory setting: 0.0
$\mathbf{0 8 - 0 7}$		Lq of Motor
Control mode	FOCPM	Factory setting: 0.0
	Settings	$0.0 \sim 6553.5 \mathrm{mH}$

08-08 Reserved

08-09 Angle between Magnetic Field and PG Origin Unit: 0.1
Control
mode

FOCPM
Factory setting: 360.0
Settings $\quad 0.0 \sim 360.0^{\circ}$
[1] This function is used to measure the angle between magnetic field and PG origin.

08-10	Magnetic Field Re-orientation			
Control mode	FOCPM			Factory setting: 0
	Settings	0	Disable	
		1	Enable	

D] When it doesn't have origin-adjustment for encoder (Pr.08-09 is 360.0), it can only ensure that the motor operation efficiency can be up to 86% of the best efficiency. In this situation, when the operation efficiency needs to be improved, user can re-power on or set Pr.08-10 to 1 to get the magnetic field orientation.

Chapter 4 Parameters

Group 9: Communication Parameters

When the AC motor drive is controlled by RS-485 serial communication, a converter, VFD-USB01 or IFD8500, should be connected between the AC motor drive and PC.

Serial interface

RS-485 5: NC
6: NC
09-00 ~Communication Address

| Control
 mode | VF VFPG SVC | FOCPG TQCPG FOCPM | Factory Setting: 1 |
| :--- | :--- | :--- | :--- | :--- |
| Settings 1 to 254 | | | |

[a] If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter. And the communication address for each $A C$ motor drive must be different and unique.

09-01	N Transmission Speed	Unit: 0.1			
Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory Setting: 9.6

Settings $\quad 4.8$ to 115.2 kbps
[a] This parameter is used to set the transmission speed between the RS485 master (PLC, PC, etc.) and AC motor drive.

09-02 \quad N Transmission Fault Treatment

Control mode	VF	VFPG	SVC	FOCPG TQCPG FOCPM	Factory Setting: 3
	Settings	0	Warn and keep operating		
		1	Warn and RAMP to stop		
	2	Reserved			
		3	No action and no display		

(1) This parameter is set to how to react if transmission errors occur.

09-03 \wedge Time-out Detection
Unit: 0.1

| Control
 mode | VF VFPG | SVC | FOCPG TQCPG FOCPM |
| :--- | :--- | :--- | :--- | Factory Setting: 0.0

[a] It is used to set the communication time-out time.

09-04 N Communication Protocol

| Control
 mode | VF VFPG | SVC FOCPG TQCPG FOCPM | Factory Setting: 13 |
| :--- | :--- | :--- | :--- | :--- |

Settings	0	Modbus ASCII mode, protocol <7,N,1>
	1	Modbus ASCII mode, protocol <7,N,2>
2	Modbus ASCII mode, protocol <7,E,1>	
	3	Modbus ASCII mode, protocol <7,O,1>
	4	Modbus ASCII mode, protocol <7,E,2>
	5	Modbus ASCII mode, protocol <7,O,2>
6	Modbus ASCII mode, protocol <8,N,1>	
7	Modbus ASCII mode, protocol <8,N,2>	
	8	Modbus ASCII mode, protocol <8,E,1>
9	Modbus ASCII mode, protocol <8,O,1>	
10	Modbus ASCII mode, protocol <8,E,2>	
11	Modbus ASCII mode, protocol <8,O,2>	
12	Modbus RTU mode, protocol <8,N,1>	
13	Modbus RTU mode, protocol <8,N,2>	
14	Modbus RTU mode, protocol <8,E,1>	
15	Modbus RTU mode, protocol <8,O,1>	
16	Modbus RTU mode, protocol <8,E,2>	
17	Modbus RTU mode, protocol <8,O,2>	

d 1. Control by PC or PLC

\star A VFD-VL can be set up to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit). Users can select the desired mode along with the serial port communication protocol in Pr.09-04.
\star Code Description:

ASCII mode:

Each 8-bit data is the combination of two ASCII characters. For example, a 1-byte data:
64 Hex, shown as ' 64 ' in ASCII, consists of ' 6 ' (36 Hex) and ' 4 ' (34 Hex).

Character	'0'	$' 1 '$	$' 2 '$	$' 3 '$	$' 4 '$	$' 5 '$	$' 6 '$	$' 7 '$
ASCII code	30 H	31 H	32 H	33 H	34 H	35 H	36 H	37 H

Character	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASClI code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

RTU mode:
Each 8-bit data is the combination of two 4-bit hexadecimal characters. For example, 64
Hex.

Chapter 4 Parameters | [$1 / \pi / 2 / 4$

10-bit character frame (For ASCII):
(7.N.2)

11-bit character frame (For RTU):

(8.E.1)

[a] 3. Communication Protocol
3.1 Communication Data Frame:

ASCII mode:

STX	Start character ' $:$ ' (3AH)
Address Hi	Communication address: 8-bit address consists of 2 ASCII codes
Address Lo	
Function Hi	Command code: 8-bit command consists of 2 ASCII codes
Function Lo	
$\begin{gathered} \text { DATA }(\mathrm{n}-1) \\ \text { to } \\ \text { DATA } 0 \\ \hline \end{gathered}$	Contents of data: Nx8-bit data consist of 2 n ASCII codes $\mathrm{n}<=16$, maximum of 32 ASCII codes
LRC CHK Hi	LRC check sum: 8-bit check sum consists of 2 ASCII codes
LRC CHK Lo	
END Hi	End characters: END1 = CR (0DH), END0= LF(OAH)
END Lo	

RTU mode：

START	A silent interval of more than 10 ms
Address	Communication address：8－bit address
Function	Command code：8－bit command
DATA（ $\mathrm{n}-1)$ to DATA 0	Contents of data： $\mathrm{n} \times 8$－bit data， $\mathrm{n}<=16$
CRC CHK Low	CRC check sum： 16 －bit check sum consists of 28 －bit characters
CRC CHK High	A silent interval of more than 10 ms
END	

3．2 Address（Communication Address）

Valid communication addresses are in the range of 0 to 254 ．A communication address equal to 0 ， means broadcast to all AC drives（AMD）．In this case，the AMD will not reply any message to the master device．
00 H ：broadcast to all AC drives
01H：AC drive of address 01
OFH：AC drive of address 15
10H：AC drive of address 16
FEH：AC drive of address 254
For example，communication to AMD with address 16 decimal（10H）：
ASCII mode：Address＝＇1＇，＇0＇＝＞＇1＇＝31H，＇0＇＝30H
RTU mode：Address＝10H

3．3 Function（Function code）and DATA（data characters）

The format of data characters depends on the function code．
03H：read data from register
06H：write single register
08H：loop detection
10H：write multiple registers
The available function codes and examples for VFD－VL are described as follows：
（1）03H：multi read，read data from registers．
Example：reading continuous 2 data from register address 2102 H, AMD address is 01 H ．
ASCII mode：
Command message：

STX	＇
Address	＇0＇
	＇1＇
Function	＇0＇
	＇3＇
Starting data address	＇2＇
	＇1＇
	＇0＇
	＇2＇
Number of data （count by word）	＇0＇
	＇0＇

Response message：

STX	＇$'$
Address	＇0＇
	＇1＇
Function	＇0＇
	＇3＇
Number of data （Count by byte）	＇0＇
	＇4＇
Content of starting address 2102H	＇1＇
	＇7＇
	＇7＇
	＇0＇

Command message:

	'0'
	'2'
LRC Check	'D'
	'7'
END	CR
	LF

Response message:

Content of address 2103H	'0'
	'0'
	'0'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:
Command message:

Address	01 H
Function	03 H
Starting data	21 H
address	02 H
Number of data (count by word)	00 H
CRC CHK Low	02 H
CRC CHK High	67 H

Response message:

Address	01 H
Function	03 H
Number of data (count by byte)	04 H
Content of address 2102 H	17 H
	70 H
Content of address 2103 H	00 H
	00 H
CRC CHK Low	FEH
CRC CHK High	5 CH

(2) 06 H : single write, write single data to register.

Example: writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .
ASCII mode:

Command message:

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:
Command message:

Address	01 H
Function	06 H
Data address	01 H
	00 H
Data content	17 H
	70 H

Response message:	
STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response message:

Address	01 H
Function	06 H
Data address	01 H
	00 H
Data content	17 H
	70 H

Chapter 4 Parameters

CRC CHK Low	86 H
	22 H

(3) 10 H : write multiple registers (write multiple data to registers)

Example: Set the multi-step speed,
Pr.04-00=50.00 (1388H), Pr.04-01=40.00 (0FA0H). AC drive address is 01 H .
ASCII Mode:

Command message:

STX	' ${ }^{\prime}$
Address 1 Address 0	'0'
	'1'
Function 1	'1'
Function 0	'0'
Starting data address	'0'
	'5'
	'0'
	'0'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'
Number of data (count by byte)	'0'
	'4'
The first data content	'1'
	'3'
	'8'
	'8'
The second data content	'0'
	'F'
	'A'
	'0'
LRC Check	'9'
	'A'
END	CR
	LF

RTU mode:
Command message:

Address	01H
Function	10H
Starting data	05H
address	00H
Number of data	00H'
(count by word)	02H
Number of data (count by byte)	04
The first data	13H
content	88H
The second data	0FH
content	AOH
CRC Check Low	'9'
CRC Check High	'A'

Response message:

STX	':'
Address 1	'0'
Address 0	'1'
Function 1	'1'
Function 0	'0'
Starting data address	'0'
	'5'
	'0'
	'0'
Number of data (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'E'
	'8'
END	CR
	LF

Response message:

Address	01 H
Function	10 H
Starting data address	05 H
	00 H
Number of data	00 H
(count by word)	02 H
CRC Check Low	41 H
CRC Check High	04 H

Chapter 4 Parameters

3.4 Check sum

ASCII mode:
LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.
For example, reading 1 word from address 0401 H of the AC drive with address 01 H .

STX	'
Address 1 Address 0	'0'
	'1'
Function 1 Function 0	'0'
	'3'
Starting data address	'0'
	'4'
	'0'
	'1'
Number of data	'0'
	'0'
	'0'
	'1'
LRC Check 1 LRC Check 0	'F'
	'6'
$\begin{aligned} & \text { END } 1 \\ & \text { END } 0 \end{aligned}$	CR
	LF

$01 \mathrm{H}+03 \mathrm{H}+04 \mathrm{H}+01 \mathrm{H}+00 \mathrm{H}+01 \mathrm{H}=0 \mathrm{AH}$, the 2 's-complement negation of 0 AH is $\mathrm{F} \mathbf{6 H}$.
RTU mode:

Address	01 H
Function	03 H
Starting data address	21 H
	02 H
Number of data	00 H
(count by word)	02 H
CRC CHK Low	6 FH
CRC CHK High	F 7 H

CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFH.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right with MSB zero filling, then repeat step 3 . If the LSB of CRC register is 1 , shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A 001 H , then repeat step 3.
Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8 -bit byte will have been processed.
Step 6: Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:
Unsigned char* data \leftarrow a pointer to the message buffer
Unsigned char length \leftarrow the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)\{
int j;
unsigned int reg_crc=0xFFFF;
while(length--)\{
reg_crc ${ }^{\wedge}=$ *data++;
for $(\mathrm{j}=0 ; \mathrm{j}<8 ; \mathrm{j}++$) $\{$
if(reg_crc \& 0×01) $/{ }^{*}$ LSB(b0)=1*/
reg_crc=(reg_crc>>1) ^ $0 x A 001$;
\}else\{
reg_crc=reg_crc >>1;
\}
\}
\}
return reg_crc;
\}

3.5 Address list

The contents of available addresses are shown as below:

Content	Address	Function	
AC drive Parameters	$\begin{aligned} & \text { GGnn } \\ & \text { H } \end{aligned}$	GG means parameter group, nn means parameter number, for example, the address of $\operatorname{Pr} 4-01$ is 0401 H . Referencing to chapter 5 for the function of each parameter. When reading parameter by command code 03 H , only one parameter can be read at one time.	
Command Write only	2000H	Bit 0-3	0 : No function 1: Stop 2: Run 3: Jog + Run
		Bit 4-5	00B: No function 01B: FWD 10B: REV 11B: Change direction
		Bit 6-7	00B: 1st accel/decel 01B: 2nd accel/decel 10B: 3rd accel/decel 11B: 4th accel/decel
		Bit 8-11	Represented 16 step speeds.

Content	Address	Function	
Status monitor Read only		Bit 12	1: disable bit 06-11
		Bit 13~14	00B: No function
			01B: operated by digital keypad
			02B: operated by Pr.00-15 setting
			03B: change operation source
		Bit 15	Reserved
	2001H	Frequency command	
	2002H	Bit 0	1: EF (external fault) on
		Bit 1	1: Reset
		Bit 2	1: B.B. ON
		Bit 3-15	Reserved
	2100H	Fault code: refer to Pr.06-16 to Pr.06-21	
	2119H	Bit 0-Bit 1	00: Stop
			01: deceleration
			10: Ready for operation
			11: operation
		Bit 2	1:JOG command
		Bit 3-Bit 4	00: FWD command, FWD output
			01: FWD command, REV output
			10: REV command, FWD output
			11: Reserved
		Bit 5	Reserved
		Bit 6	Reserved
		Bit 7	Reserved
		Bit 8	1: Master frequency Controlled by communication interface
		Bit 9	1: Master frequency controlled by analog/external terminals signal
		Bit 10	1: Operation command controlled by communication interface
		Bit 11	1: Parameters have been locked
		Bit 12	1: enable to copy parameter from keypad
		Bit 13-15	Reserved
	2102H	Frequency command (F)	
	2103H	Output frequency (H)	
	2104H	Output current (AXXX.X)	
	2105H	DC-BUS Voltage (UXXX.X)	
	2106H	Output voltage (EXXX.X)	
	2107H	Current step number of Multi-Step Speed Operation	
	2116H	Multi-function display (Pr.00-04)	
	2201H	Pr.00-05 user-defined setting	
	2203H	AUI1 analog input (XXX. XX \%)	
	2204H	ACl analog input (XXX. XX \%)	
	2205H	AUI2 analog input (XXX. XX \%)	
	2206H	Display temperature of IGBT (${ }^{\circ} \mathrm{C}$)	
	2207H	Display temperature of heatsink (${ }^{\circ} \mathrm{C}$) (only for model 40HP and above)	
	2208H	Digital input state	
	2209 H	Digital output state	

3.6 Exception response:

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.
The AC motor drive does not receive the messages due to a communication error; thus, the AC motor drive has no response. The master device will eventually process a timeout condition.
The AC motor drive receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of AC motor drive. The xx of "CExx" is a decimal code equal to the exception code that is described below.
In the exception response, the most significant bit of the original command code is set to 1 , and an exception code which explains the condition that caused the exception is returned.

Example of an exception response of command code 06 H and exception code 02 H :

ASCII mode:

STX	'
Address Low Address High	'0'
	1'
Function Low Function High	'8'
	'6'
Exception code	'0'
	2'
LRC CHK Low LRC CHK High	'7'
	'7'
$\begin{aligned} & \text { END } 1 \\ & \text { END } 0 \end{aligned}$	CR
	LF

RTU mode:

Address	01 H
Function	86 H
Exception code	02 H
CRC CHK Low	C 3 H
CRC CHK High	A1H

The explanation of exception codes:

Exception code	Explanation 01lllegal function code: The function code received in the command message is not available for the AC motor drive.
02	Illegal data address: The data address received in the command message is not available for the AC motor drive.
03	Illegal data value: The data value received in the command message is not available for the AC drive.
04	Slave device failure: The AC motor drive is unable to perform the requested action.
10	Communication time-out: If Pr.09-03 is not equal to 0.0, Pr.09-02=0~1, and there is no communication on the bus during the Time Out detection period (set by Pr.09-03), "cE10" will be shown on the keypad.

| Control
 mode | VF VFPG SVC FOCPG TQCPG FOCPM | Factory Setting: 2.0 |
| :--- | :--- | :--- | :--- |

Settings $\quad 0.0 \sim 200.0 \mathrm{~ms}$
[1] This parameter is the response delay time after AC drive receives communication command as shown in the following.

Group 10 Speed Feedback Control Parameters

［1］When Pr．10－00 is set to 3，encoder will have one sine and one cosine signal for each revolution．The signal must be： 0.75 to 1.2 Vpp for the amplitude with phase angle $90^{\circ} \pm 5$ elec． （EX：ERN 1185 ERN 1387）

凹】 When setting is 4 or 6 ，it needs to wait for 2 seconds after applying the power to execute RUN command．
［1］Detection of the electromagnetic pole：
Setting 1 or 5：The AC motor drive will output short circuit to detect the position of the electromagnetic pole．At this moment，the motor will generate a little noise．

Setting 2：The AC motor drive will detect the position of the electromagnetic pole by the UVW signal of encoder．

Setting 3：The AC motor drive will detect the position of the electromagnetic pole by the sine signal of encoder．

Setting 4 or 6：The AC motor drive will detect the position of the electromagnetic pole by the communication signal of encoder．
［1］Reference table for tuning

Setting of PG signal type	PG signal type	Applicable PG card	Pr．08－00＝1	Pr．08－00＝3
$10-00=1$	A，B，Z	EMVL－PGABO／ABL	Motor will run	Motor will run
$10-00=2$	A，B，Z＋U，V，W	EMVL－PGABL	Motor will run	Motor won＇t run
$10-00=3$	SIN／COS＋ Sinusoidal	EMVL－PGH01／02	Motor will run	Motor will run

Chapter 4 Parameters
 [VTVM

Setting of PG signal type	PG signal type	Applicable PG card	Pr.08-00=1	Pr.08-00=3
$10-00=4$	SIN/COS+Endat	EMVL-PGS01	Motor will run	Motor won't run
$10-00=5$	SIN/COS	EMVL-PGH01/02	Motor will run	Motor will run
$10-00=6$	SIN/COS + Hiperface	EMVL-PGS01	Motor will run	Motor won't run

10-01 Encoder Pulse Unit: 1

| Control
 mode | VFPG FOCPG TQCPG FOCPM |
| :---: | :--- |\quad Factory Setting: 600 mode Settings 1 to 20000

(1) A Pulse Generator (PG) or encoder is used as a sensor that provides a feedback signal of the motor speed. This parameter defines the number of pulses for each cycle of the PG control.

10-02 Encoder Input Type Setting

Control mode	VFPG FOCPG TQCPG FOCPM	Factory Setting: 0

Settings 0 Disable

Phase A leads in a forward run command and phase B leads in a reverse run command

1

Phase B leads in a forward run command and phase A leads in a reverse run command

2

Phase A is a pulse input and phase B is a direction input. (low input=reverse direction, high input=forward direction)

3

Phase A is a pulse input and phase B is a direction input. (low input=forward direction, high input=reverse direction)

4

Single-phase input
5
Forward
running
Id It is helpful for the stable control by inputting correct pulse type.

10-03 N Encoder Feedback Fault Treatment (PGF1, PGF2)

Control	VFPG FOCPG TQCPG		Factory Setting: 2
	Settings	0 Warn and keep operation	
		1 Warn and RAMP to stop	
		2 Warn and stop operation	
10-04	\wedge Detection Time for Encoder Feedback Fault		Unit: 0.1
Control mode	VFPG FOCPG TQCPG FOCPM		Factory Setting: 1.0
	Settings	0.0 to 10.0 sec	

[1] When PG loss, encoder signal error, pulse signal setting error or signal error, if time exceeds the detection time for encoder feedback fault (Pr.10-04), the PG signal error will occur. Refer to the Pr.10-03 for encoder feedback fault treatment.

| 10-05 | N Encoder Stall Level (PGF5) | Unit: 1 | |
| :---: | :--- | :--- | :--- | ---: |
| Control
 mode | VFPG svc | FOCPG FOCPM | Factory Setting: 115 |
| | Settings | 0 to 120\% (0: disable) | |

$\mathbb{C l}$ This parameter determines the maximum encoder feedback signal allowed before a fault occurs. (max. output frequency Pr. $01-00=100 \%$)

10-06	N Encoder Stall Detection Time	Unit: 0.1		
Control mode	VFPG	sVc	FOCPG FOCPM	Factory Setting: 0.1
Settings				0.0 to 2.0 sec
$\mathbf{1 0 - 0 7}$	N Encoder Slip Range (PGF7)	Unit: 1		
Control mode	VFPG	sVc	FOCPG FOCPM	Factory Setting: 50
	Settings	0 to 50\% (0: disable)		

Control mode	VFPG	SVC FOCPG FOCPM	Factory Setting: 0.5

Settings $\quad 0.0$ to 10.0 sec

10-09 \sim Encoder Stall and Slip Error Treatment

Control mode	VFPG	SVC	FOCPG FOCPM
	Settings	0	Warn and keep operating
		1	Warn and RAMP to stop
		2	Warn and COAST to stop

[a] When the value of (rotation speed - motor frequency) exceeds Pr.10-07 setting, detection time exceeds Pr.10-08 or motor frequency exceeds Pr.10-05 setting, it will start to accumulate time. If detection time exceeds Pr.10-06, the encoder feedback signal error will occur. Refer to Pr.10-09 encoder stall and slip error treatment.

10-10 Mode Selection for UVW Input

| Control
 mode | VFPG | FOCPG | TQCPG FOCPM |
| :---: | :---: | :---: | :---: | :---: |
| | Settings | 0 | Z signal is at the falling edge of U-phase |
| | | 1 | Z signal is at the rising edge of U-phase |

(1) Setting 0 : when the operation is $U->V->W, Z$ signal is at the falling edge of U-phase.

Setting 1: when the operation is $\mathrm{U}->\mathrm{V}->\mathrm{W}, \mathrm{Z}$ signal is at the rising edge of U -phase.

Pr. 10-10=0

10-11 \sim ASR (Auto Speed Regulation) Control (P) of Zero Speed

| Control
 mode | VF VFPG | SVC FOCPG FOCPM | Factory Setting: 100.0 |
| :--- | :--- | :--- | :--- | :--- |
| | Settings $\quad 0.0$ to 500.0% | | |

［1］ASR P determines Proportional control and associated gain（P）．ASR I determines integral control and associated gain（I）．
［1］When integral time is set to 0 ，it is disabled．Pr．10－17 defines the switch frequency for the ASR1（Pr．10－13，Pr．10－14）and ASR2（Pr．10－15，Pr．10－16）．

Chapter 4 Parameters | $\mathrm{V} / \boldsymbol{\sim}$

[a] When using multi-function input terminals to switch ASR1/ASR2, the diagram will be shown as follows.

Setting multi-function input terminal to 17
(ASR1/ASR2 switch)

10-18 N ASR Primary Low Pass Filter Gain
Unit: 0.001
$\begin{gathered}\text { Control } \\ \text { mode }\end{gathered}$
VF VFPG SVC FOCPG FOCPM \quad Factory Setting: 0.008
Settings $\quad 0.000$ to 0.350 sec
[1] It defines the filter time of the ASR command.
Wl When setting to 1 , this function is disabled.

10-19 \wedge Zero Speed Gain (P)
Unit: 0.01
Control FOCPM Factory Setting: 80.00
mode
Settings $\quad 0.00$ to 655.00%
[1] When Pr.11-00 is set to Bit 7=1, Pr.10-19 is valid.

10-20 \wedge Zero Speed/ASR1 Width Adjustment
Unit: 0.01

Control mode	VFPG FOCPG FOCPM	Factory Setting: 5.00

Settings 0.0 to 120.00 Hz			
$\mathbf{1 0 - 2 1}$	N ASR1/ASR2 Width Adjustment	Unit: 0.01	

Control
mode

VFPG FOCPG FOCPM
Factory Setting: 5.00
Settings $\quad 0.0$ to 120.00 Hz
[1] These two parameters are used to decide width of slope of ASR command during zero speed to low speed or Pr.10-17 to high speed.

(1] When Pr.10-24=0, the zero speed control needs to be used with Pr.02-29. (refer to the explanations in Pr.02-32)

Group 11 Advanced Parameters

11-00 System Control

Control mode	FOCPG FOCPM	Factory Setting: 0

Settings Bit $0=0 \quad$ No function

Bit $0=1 \quad$ ASR Auto tuning, PDFF enable
Bit $7=0 \quad$ No function
Bit $7=1 \quad \begin{aligned} & \text { When position control is en } \\ & \text { (DC Brake Current Level) }\end{aligned}$
Bit $15=0$ when power is applied, it will detect the position of magnetic field again

Bit $15=1$ when power is applied, it will start from the magnetic field position of previous power failure
(1) Bit 0=1: PDFF function is enabled and system will generate an ASR setting, Pr. 10-11~10-16 will be invalid and Pr.11-09 to 11-10 will be valid.

11-01 \sim Elevator Speed
Unit: 0.01

Control mode	FOCPG FOCPM	Factory Setting: 1.00
	Settings $\quad 0.10$ to $3.00 \mathrm{~m} / \mathrm{s}$	

11-02 N Sheave Diameter Unit: 1

Control mode	FOCPG FOCPM	Factory Setting: 400	
	Settings $\quad 100$ to 2000 mm		
11-03	N Mechanical Gear Ratio	Fnit: 1	
Control mode	FOCPG FOCPM		
Settings $\quad 1$ to 100			
		Factory Setting: 1	
11-04	N Suspension Ratio		
Control mode	FOCPG FOCPM		
	Settings	0	$1: 1$
		1	$2: 1$

suspension ration 1:1

suspension ration 2:1

11-05 N Inertial Ratio Unit: 1
Control FOCPG FOCPM Factory Setting: 40

Settings
1 to 300%
[a] The load inertia can be calculated by the settings of motor parameter, Pr.11-02 Sheave Diameter, Pr.11-14 Motor Current at Accel. and Pr.11-15 Elevator Acceleration. This parameter can be used to adjust inertia ratio of load.

11-06	\wedge Zero-speed Bandwidth	Unit: 1
11-07	N Low-speed Bandwidth	Unit: 1
$11-08$	N High-speed Bandwidth	Unit: 1
Control mode	FOCPG FOCPM	Factory Setting: 10

Settings 0 to 40 Hz
[1] After estimating inertia and set Pr.11-00=1 (auto tuning), user can adjust parameters Pr.11-06, 11-07 and 11-08 separately by speed response. The larger number you set, the faster response you will get. Pr.10-08 is the switch frequency for low-speed/high-speed bandwidth.
Settings 0 to 200\%
@ After finishing estimating and set Pr.11-00=1 (auto tuning), using Pr.11-09/11-10 to reduce overshoot. Please adjust PDFF gain value by actual situation.
[1] Besides traditional PI control, it also provides PDFF function to reduce overshoot for speed control.

1. Get system inertia
2. Set Pr.11-00 to 1
3. Adjust Pr.11-09/11-10 (the larger number is set and the suppressed overshoot function will be better. But it needs to be used by the actual condition)

11-10	\wedge Gain for Speed Feed Forward	Unit: 1
Control mode	FOCPG FOCPM	Factory Setting: 0

Settings 0 to 500
[1] Pr.11-09 and Pr.11-10 will be enabled when Pr.11-00 is set to Bit0=1.

11-11 N Notch Filter Depth
Unit: 1
Control FOCPG FOCPM Factory Setting: 0 mode Settings 0 to 20 db

11-12 N Notch Filter Frequency
Unit: 0.01
Control FOCPG FOCPM mode

Settings $\quad 0.00$ to 200.00 Hz
[1] This parameter is used to set resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system.
$\llbracket]$ The larger number you set Pr.11-11, the better suppression resonance function you will get.
[1] The notch filter frequency is the resonance of mechanical frequency.
11-13 N Low-pass Filter Time of Keypad Display Unit: 0.001

| Control
 mode | VF | VFPG | SVC | FOCPG TQCPG FOCPM |
| :---: | :--- | :--- | :--- | :--- | Factory Setting: 0.500

Settings 0.001 to 65.535 s
(1) It is used to lower the blinking frequency of LCD display.

11-14 Motor Current at Accel. Unit: 1

Control mode	FOCPM	Factory Setting: 150	
	Settings	50 to 200%	

11-15 \wedge Elevator Acceleration Unit: 0.1

Control mode	FOCPM	Factory Setting: 0.75

Settings $\quad 0.60$ to $2.00 \mathrm{~m} / \mathrm{s}$

Group 12 User-defined Parameters

12-00 12-31					
Control mode	VF	VFPG	SVC	FOCPG	
	Settings	-		Factory Setting: -	

[1] Users can enter the parameters from group 0 to group 11 into group 12 (it can save 32 parameters). The saved value can also be the parameter addresses (but the hexadecimal value needs to be converted to decimal value).
[1] Example 1: If you want to enter Pr.08-03 into Pr. 12-00, you only need to enter 0803 into Pr.12-00. Then it will display the setting of Pr.08-03 in Pr.13-00. Refer to the following figure for the operation of KPVL-CC01.

Chapter 4 Parameters | [$/$ アTVML

(a) Example 2: If it needs to enter parameter address 2102 H and 211 BH by the digital keypad, 211BH needs to be converted to binary value before entering.

The setting method of 2102 H

The setting method of 211 BH
Convert 211BH (hexadecimal) to decimal value:

21 1B

$1^{1} \times 16^{1}+11 \times 16^{0}=16+11=27$ input 2127

Chapter 4 Parameters | [$1 / \sim 3 / 2$

Group 13 View User-defined Parameters

13-00

[d] Refer to group 12 for details.

Chapter 5 Troubleshooting

5.1 Over Current (OC)

5.2 Ground Fault

5.3 Over Voltage (OV)

5.4 Low Voltage (Lv)

5.5 Over Heat (OH)

5.6 Overload

5.7 Display of KPVL-CC01 is Abnormal

5.8 Phase Loss (PHL)

Chapter 5 Troubleshooting | [$\mathrm{N} \boldsymbol{\sim}$

5.9 Motor cannot Run

5.10 Motor Speed cannot be Changed

5.11 Motor Stalls during Acceleration

5.12 The Motor does not Run as Expected

5.13 Electromagnetic/Induction Noise

There are many noises surround the AC motor drives and invade it by radiation or power circuit. It may cause the misoperation of control circuit and even damage the AC motor drive. Of course, that is a solution to increase the noise tolerance of $A C$ motor drive. But it is not the best one due to the limit. Therefore, solve it from the outside as following will be the best.

1. Add surge killer on the relay or contact to suppress switching surge between ON/OFF.
2. Shorten the wiring length of the control circuit or serial circuit and separate from the main circuit wiring.
3. Comply with the wiring regulation for those shielded wire and use isolation amplifier for long wire.
4. The grounding terminal should comply with the local regulation and ground independently, i.e. not to have common ground with electric welding machine and power equipment.
5. Connect a noise filter at the input terminal of the $A C$ motor drive to prevent noise from power circuit.

In a word, three-level solutions for electromagnetic noise are "no product", "no spread" and "no receive".

5.14 Environmental Condition

Since AC motor drive is an electronic device, you should comply with the environmental condition stated in the appendix A. Following are the remedial measures for necessary.

1. To prevent vibration, anti-vibration spacer is the last choice. The vibration tolerance must be within the specification. The vibration effect is equal to the mechanical stress and it cannot occur frequently, continuously or repeatedly to prevent damaging AC motor drive.
2. Store in a clean and dry location free from corrosive fumes/dust to prevent rustiness, poor contact. It also may cause short by low insulation in a humid location. The solution is to use both paint and dust-proof. For particular occasion, use the enclosure with whole-seal structure.
3. The surrounding temperature should be within the specification. Too high or low temperature will affect the lifetime and reliability. For semiconductor components, damage will occur once any specification is out of range. Therefore, it is necessary to clean and periodical check for the air cleaner and cooling fan besides having cooler and sunshade.

Chapter 5 Troubleshooting | $1 / \pi / 2$

In additional, the microcomputer may not work in extreme low temperature and needs to have heater.
4. Store within a relative humidity range of 0% to 90% and non-condensing environment. Do not turn off the air conditioner and have exsiccator for it.

5.15 Affecting Other Machines

AC motor drive may affect the operation of other machine due to many reasons. The solutions are as follows.

- High Harmonic at Power Side

If there is high harmonic at power side during running, the improved methods are:

1. Separate power system: use transformer for AC motor drive.
2. Use reactor at the power input terminal of AC motor drive or decrease high harmonic by multiple circuit.
3. If there is phase lead capacitor, it should use serial reactor to prevent capacitor damage from high harmonic.

■ Motor Temperature Rises

When the motor is induction motor with ventilation-cooling-type used in variety speed operation, bad cooling will happen in the low speed. Therefore, it may overheat. Besides, high harmonic is in output waveform to increase copper loss and iron loss. Following measures should be used by load situation and operation range when necessary.

1. Use the motor with independent power ventilation or increase the horsepower.
2. Use inverter duty motor.
3. Do NOT run in the low speed

Chapter 6 Fault Code Information and Maintenance

6.1 Fault Code Information

The AC motor drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC motor drive digital keypad display. The six most recent faults can be read from the digital keypad or communication.

The AC motor drive is made up by numerous components, such as electronic components, including IC, resistor, capacity, transistor, and cooling fan, relay, etc. These components can't be used permanently. They have limited-life even under normal operation. Preventive maintenance is required to operate this AC motor drive in its optimal condition, and to ensure a long life.

Basic check-up items to detect if there were any abnormalities during operation are:

- Wait 5 seconds after a fault has been cleared before performing reset via keypad of input terminal.
- When the power is off after 5 minutes for $\leqq 22 \mathrm{~kW}$ models and 10 minutes for $\geqq 30 \mathrm{~kW}$ models, please confirm that the capacitors have fully discharged by measuring the voltage between DC+ and DC-. The voltage between DC+ and DC- should be less than 25VDC.
- Only qualified personnel can install, wire and maintain AC motor drives. Please take off any metal objects, such as watches and rings, before operation. And only insulated tools are allowed.
- Never reassemble internal components or wiring.
- Make sure that installation environment comply with regulations without abnormal noise, vibration and smell.

Chapter 6 Fault Code Information and Maintenance | $1 / \pi / /$ 니

6.1.1 Common Problems and Solutions

Following fault name will only be displayed when using with optional digital keypad KPVLCC01.

Display	Description
	Over-current during acceleration (Output current exceeds triple rated current during acceleration.)
oc at Accel F® Faul t Code: 01	Corrective Actions: 1. Short-circuit at motor output: Check for possible poor insulation at the output lines. 2. Acceleration Time too short: Increase the Acceleration Time. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
	Over-current during deceleration (Output current exceeds triple rated current during deceleration.)
oc at Decel F F Faul t Code: 02	Corrective Actions: 1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Deceleration Time too short: Increase the Deceleration Time. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
	Over-current during steady state operation (Output current exceeds triple rated current during constant speed.)
oc at Normal SPD Fs Faul tCode: 03	Corrective Actions: 1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Sudden increase in motor loading: Check for possible motor stall. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.

Display
Ground Faul t Fo Faul t Code: 04

Ground fault

Corrective Actions:

When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user.

1. Check the wiring connections between the AC motor drive and motor for possible short circuits, also to ground.
2. Check whether the IGBT power module is damaged.
3. Check for possible poor insulation at the output line.

Short-circuit is detected between upper bridge and lower

ov at Accel

F® Faul t Code: 07

Corrective Actions:

1. Check if the input voltage falls within the rated AC motor drive input voltage range.
2. Check for possible voltage transients.
3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
DC BUS over-voltage during deceleration (230V: DC 450V; 460V: DC 900V)
```
ov at Decel
F^ Faul t Code:08
```


Corrective Actions:

1. Check if the input voltage falls within the rated $A C$ motor drive input voltage range.
2. Check for possible voltage transients.
3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
DC BUS over-voltage during constant speed (230V: DC 450V; 460V: DC 900V)

ov at Normal SPD
 F々 Faul tCode:09

Corrective Actions:

1. Check if the input voltage falls within the rated $A C$ motor drive input voltage range.
2. Check for possible voltage transients.
3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.

Display	Description

DC BUS over-voltage at stop

```
ov at St op
```


Corrective Actions:

1. Check if the input voltage falls within the rated AC motor drive input voltage range.
2. Check for possible voltage transients.

Lv at Accel
 Fs Faul t Code: 11

Corrective Actions:

1. Check if the input voltage is normal
2. Check for possible sudden load

DC BUS voltage is less than Pr.06-00 during deceleration.

Lv at Decel Fs Faul t Code: 12

Corrective Actions:

1. Check if the input voltage is normal
2. Check for possible sudden load

DC BUS voltage is less than Pr.06-00 during constant speed.

```
Lv at Normal SPD
Fs Faul tCode:13
```


Corrective Actions:

1. Check if the input voltage is normal
2. Check for possible sudden load

Low voltage at stop

```
Lv at Stop
F^ Faul t Code:14
```

Phase Loss

```
F& Faul t Code:15
```


I GBT Over Heat

Fs Faul t Code: 16

Corrective Actions:

1. Check if the input voltage is normal
2. Check for possible sudden load

Phase loss

Corrective Actions:

Check Power Source Input if all 3 input phases are connected without loose contacts.

IGBT overheating

IGBT temperature exceeds protection level
1 to15HP: $90^{\circ} \mathrm{C}$
20 to $100 \mathrm{HP}: 100^{\circ} \mathrm{C}$

Corrective Actions:

1. Ensure that the ambient temperature falls within the specified temperature range.
2. Make sure that the ventilation holes are not obstructed.
3. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fins.
4. Check the fan and clean it.
5. Provide enough spacing for adequate ventilation.

Display	Description
Heat Si nk oH Fs Faul t Code: 17	IGBT overheating IGBT temperature exceeds protection level $40 \text { to100HP: } 100^{\circ} \mathrm{C}$ Corrective Actions: 1. Ensure that the ambient temperature falls within the specified temperature range. 2. Make sure that the ventilation holes are not obstructed. 3. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fins. 4. Check the fan and clean it. 5. Provide enough spacing for adequate ventilation.
I GBT HW Er r Fs Faul t Code: 18	IGBT hardware failure Corrective Actions: Return to the factory
Heat Si nk HW Er r Fs Fault Code:19	Heatsink overheating Corrective Actions: Return to the factory
Fan Locked Fo Fault Code: 20	Fan failure Corrective Actions: 1. Make sure that the fan is not obstructed. 2. Return to the factory
Inverter ol Fo Faul tCode: 21	Overload The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of $\mathbf{6 0}$ seconds. Corrective Actions: 1. Check whether the motor is overloaded. 2. Take the next higher power AC motor drive model.
Ther mal Rel ay 1 Fo Faul t Code: 22	Motor 1 overload Corrective Actions: 1. Check whether the motor is overloaded. 2. Check whether the rated current of motor (Pr.05-01) is suitable 3. Take the next higher power AC motor drive model.
Motor Over Heat Fs Fault Code: 24	Motor overheating The AC motor drive detects that the internal temperature exceeds Pr.06-30 (PTC level) Corrective Actions: 1. Make sure that the motor is not obstructed. 2. Ensure that the ambient temperature falls within the specified temperature range. 3. Take the next higher power AC motor drive model.

Display	Description
	Electronic Thermal Relay 1 Protection Corrective Actions: 1. Check whether the motor is overloaded. 2. Check whether motor rated current setting (Pr.05-01) is suitable 3. Check electronic thermal relay function 4. Take the next higher power AC motor drive model.
Over Torque 1 F® Faul t Code: 26	
	Electronic Thermal Relay 2 Protection
	Corrective Actions:
Over Torque 2 Fs Faul t Code: 27	1. Check whether the motor is overloaded. 2. Check whether motor rated current setting (Pr.05-01) is suitable 3. Check electronic thermal relay function 4. Take the next higher power AC motor drive model.
	Internal EEPROM can not be programmed.
EEPROM Write Er r F® Faul t Code: 30	Corrective Actions:
	1. Press "RESET" key to the factory setting. 2. Return to the factory.

EEPROM Read Er r Fs Faul t Code: 31

Corrective Actions:

Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory.

U-phase error

Corrective Actions:

Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory.

V-phase error

Corrective Actions:

Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory.

W-phase error

[^2]| Display | Description |
| :---: | :---: |
| oc HW Error
 Fs Faul t Code: 37 | OC hardware error
 Corrective Actions:
 Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory. |
| ov HW Error
 Fs Faul tCode: 38 | OV hardware error
 Corrective Actions:
 Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory. |
| GFF HW Error Fs Fault Code: 39 | GFF hardware error
 Corrective Actions:
 Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory. |
| Auto Tuning Err Fs Fault Code: 40 | Auto tuning error
 Corrective Actions:
 1. Check cabling between drive and motor
 2. Check the motor capacity and parameters settings
 3. Retry again |
| PID Fbk Error F』 Faul t Code: 41 | PID loss (ACI)
 Corrective Actions:
 1. Check the wiring of the PID feedback
 2. Check the PID parameters settings |
| PG Fbk Error
 Fo Faul tCode: 42 | PG feedback error
 Corrective Actions:
 Check if Pr.10-01 is not set to 0 when it is PG feedback control |
| PG Fbk Loss
 Fs Fault Code: 43 | PG feedback loss
 Corrective Actions:
 Check the wiring of the PG feedback |
| PG Fbk Over SPD Fs Faul t Code: 44 | PG feedback stall
 Corrective Actions:
 1. Check the wiring of the PG feedback
 2. Check if the setting of PI gain and deceleration is suitable
 3. Return to the factory |
| PG Fbk Devi at e F® Faul t Code: 45 | PG slip error
 Corrective Actions:
 1. Check the wiring of the PG feedback
 2. Check if the setting of PI gain and deceleration is suitable
 3. Return to the factory |

Display	Description
PG Ref Error Fの Faul t Code： 46	Pulse input error Corrective Actions： 1．Check the pulse wiring 2．Return to the factory
PG Ref Loss F® Faul t Code： 47	Pulse input loss Corrective Actions： 1．Check the pulse wiring 2．Return to the factory
```ACl Loss F^ FaultCode:48```	ACI loss   Corrective Actions：   1．Check the ACI wiring   2．Check if the ACI signal is less than 4 mA
External Fault   Fs Faul t Code： 49	External Fault   Corrective Actions：   1．Input EF（N．O．）on external terminal is closed to GND． Output U，V，W will be turned off．   2．Give RESET command after fault has been cleared．
Emer gency St op F® Faul t Code： 50	Emergency stop   Corrective Actions：   1．When the multi－function input terminals MI1 to MI8 are set to emergency stop and the AC motor drive stops output．   2．Press RESET after fault has been cleared．
Base Block Fs Faul t Code： 51	Base Block   Corrective Actions：   1．When the multi－function input terminals MI1 to MI8 are set to base block and the AC motor drive stops output．   2．Press RESET after fault has been cleared．
Password Error F＾Faul t Code： 52	Password is locked   Corrective Actions：   Keypad will be locked．Turn the power ON after power OFF to re－enter the correct password．See Pr．00－07 and 00－08．
PC Err Command F』 Faul t Code： 54	IIIegal function code   Corrective Actions：   Check if the function code is correct（function code must be 03，06，10，63）
PC Err Address Fの FaultCode： 55	IIIegal data length   Corrective Actions：   Check if the communication data length is correct．
PC Err Data F』 Faul t Code： 56	Illegal data value   Corrective Actions：   Check if the data value exceeds max．／min．value．


Display	Description
PC SI ave Fault   Fs Fault Code: 57	illegal communication address   Corrective Actions:   Check if the communication address is correct.
PC Time Out Fs Faul t Code: 58	Communication time-out   Corrective Actions:   Check if the wiring for the communication is correct.
PU Ti me Out Fs FaultCode: 59	Keypad (KPVL-CC01) communication time-out   Corrective Actions:   1. Check if the wiring for the communication is correct   2. Check if there is any wrong with the keypad
Brk Chopper Fail Fs FaultCode:60	Brake chopper fail   Corrective Actions:   Press RESET key to correct it. If fault code is still displayed on the keypad, please return to the factory.
Saf et y Rel ay Er r Fo Faul t Code: 63	Safety loop error   Corrective Actions:   1. Check if the jumper JP18 is short circuit.   2. Re-power on to try it. If fault code is still displayed on the keypad, please return to the factory.
Mech Brake Fail F』 Fault Code:64	Mechanical brake error   Corrective Actions:   1. Check if the mechanical brake signal is correct.   2. Check if the detection time setting of mechanical brake (Pr.02-35) is correct.
PG HW Error Fo Fault Code:65	PG hardware error   Corrective Actions:   1. Check if the wiring of PG feedback is correct.   2. If fault code is still displayed on the keypad with correct PG feedback, please return to the factory.

### 6.1.2 Reset

There are three methods to reset the AC motor drive after solving the fault:

1. Press $\frac{\text { STOP }}{\text { RESET }}$ key on KPVL-CC01.
2. Set external terminal to "RESET" and then set to be ON.
3. Send "RESET" command by communication.

## Chanter 6.Eault Code Information and Maintenance | [/アアV/LI <br> NOTE

Make sure that RUN command or signal is OFF before executing RESET to prevent damage or personal injury due to immediate operation.

### 6.2 Maintenance and Inspections

Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10 minutes after all display lamps have gone out, and then confirm that the capacitors have fully discharged by measuring the voltage between DC+ and DC-. The voltage between DC+ and DCshould be less than 25VDC.

- Ambient environment

Check Items	Methods and Criterion	Maintenance   Period	
		Daily	Half   Year
One			
Year			

## Voltage

Check Items	Methods and Criterion		Maintenance   Period	
		Daily	Half   Year	One   Year
Check if the voltage of main   circuit and control circuit is   correct	Measure with multimeter with standard   specification	$\bigcirc$		

Keypad

Check Items	Methods and Criterion		Maintenance   Period	
		Daily	Half   Year	One   Year
Is the display clear for reading	Visual inspection	$O$		
Any missing characters	Visual inspection	$O$		

- Mechanical parts

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One   Year
If there is any abnormal sound or vibration	Visual and aural inspection		$\bigcirc$	
If there are any loose screws	Tighten the screws		0	
If any part is deformed or damaged	Visual inspection		O	
If there is any color change by overheating	Visual inspection		$\bigcirc$	
If there is any dust or dirt	Visual inspection		0	

Main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half   Year	One   Year
If there are any loose or missing screws	Tighten or replace the screw	$\bigcirc$		
If machine or insulator is deformed, cracked, damaged or with color change due to overheating or ageing	Visual inspection NOTE: Please ignore the color change of copper plate		0	
If there is any dust or dirt	Visual inspection		$\bigcirc$	

- Terminals and wiring of main circuit

Check Items	Methods and Criterion	Maintenance   Period		
		Daily	Half   Year	One   Year
If the terminal or the plate is   color change or deformation due   to overheat	Visual inspection	0		
If the insulator of wiring is   damaged or color change	Visual inspection		0	
If there is any damage	Visual inspection	0		

- DC capacity of main circuit

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One   Year
If there is any leak of liquid, color change, crack or deformation	Visual inspection	$\bigcirc$		
If the safety valve is not removed? If valve is inflated?	Visual inspection	$\bigcirc$		
Measure static capacity when required		$\bigcirc$		

Resistor of main circuit

Check Items	Methods and Criterion	Maintenance   Period		
		Daily	Half   Year	One   Year
If there is any peculiar smell or   insulator cracks due to overheat	Visual inspection, smell	$\circ$		
If there is any disconnection	Visual inspection	$\circ$		
If connection is damaged?	Measure with multimeter with standard   specification	$\circ$		

- Transformer and reactor of main circuit

Check Items	Maintenance   Period			
	Methods and Criterion	Daily	Half   Year	One   Year
If there is any abnormal vibration   or peculiar smell	Visual, aural inspection and smell	0		

- Magnetic contactor and relay of main circuit

Check Items	Maintenance   Period			
	Methods and Criterion		Daily	
Half   Year	One   Year			
If there are any loose screws	Visual and aural inspection	$O$		
If the contact works correctly	Visual inspection	$O$		

- Printed circuit board and connector of main circuit

Check Items	Methods and Criterion	Maintenance   Period		
		Daily	Half   Year	One   Year
If there are any loose screws and   connectors	Tighten the screws and press the   connectors firmly in place.		0	
If there is any peculiar smell and   color change	Visual and smell inspection		0	
If there is any crack, damage,   deformation or corrosion	Visual inspection		0	
If there is any liquid is leaked or   deformation in capacity	Visual inspection		0	

- Cooling fan of cooling system

Check Items	Methods and Criterion	Maintenance   Period		
		Daily	Half   Year	One   Year
If there is any abnormal sound or   vibration	Visual, aural inspection and turn the   fan with hand (turn off the power   before operation) to see if it rotates   smoothly		0	
If there is any loose screw	Tighten the screw		0	0
If there is any color change due to   overheat	Change fan			

- Ventilation channel of cooling system

Check Items	Maintenance   Period			
		Daily   Half   Year		One   Year
If there is any obstruction in the   heat sink, air intake or air outlet	Visual inspection		0	

## NOTE

Please use the neutral cloth for clean and use dust cleaner to remove dust when necessary.

## Chapter 6 Fault Code Information and Maintenance | $1 / \pi / /$ 닌

This page intentionally left blank

## Appendix A Specifications

There are 230 V and 460 V models for customers to choose by their requirement.

Voltage Class	230V Class							
Model Number VFD-XXXVL	055	075	110	150	185	220	300	370
Max. Applicable Motor Output (kW)	5.5	7.5	11	15	18.5	22	30	37
Max. Applicable Motor Output (hp)	7.5	10	15	20	25	30	40	50
Rated Output Capacity (kVA)	9.5	12.5	19	25	29	34	46	55
$\begin{aligned} & \text { Rated Output Current for } \\ & \text { General Purposes (A) } \\ & \hline \end{aligned}$	21.9	27.1	41.1	53	70	79	120	146
$$	25	31	47	60	80	90	150	183
육 Maximum Output Voltage (V)	3-Phase Proportional to Input Voltage							
$\bigcirc$ Output Frequency (Hz)	$0.00 \sim 120.00 \mathrm{~Hz}$							
Carrier Frequency (kHz)	12 kHz						9 kHz	
O) Rated Input Current (A)	25	31	47	60	80	90	106	126
$\stackrel{\sim}{\sim}$ Rated Voltage/Frequency	$\begin{gathered} \text { 3-phase } \\ 200-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \end{gathered}$							
喜 Voltage Tolerance	$\pm 10 \%(180 \sim 264 \mathrm{~V})$							
드 Frequency Tolerance	$\pm 5 \%(47 \sim 63 \mathrm{~Hz})$							
Cooling Method	Fan Cooled							
Weight (kg)	8	10	10	13	13	13	36	36


Voltage Class	460V Class										
Model Number VFD-XXXVL	055	075	110	150	185	220	300	370	450	550	750
Max. Applicable Motor Output (kW)	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Max. Applicable Motor Output (hp)	7.5	10	15	20	25	30	40	50	60	75	100
Rated Output Capacity (kVA)	9.9	13.7	18	24	29	34	46	56	69	80	100
$\begin{aligned} & \text { Rated Output Current for } \\ & \text { General Purposes }(\mathrm{A}) \\ & \hline \end{aligned}$	12.3	15.8	21	27	34	41	60	73	91	110	150
© **Rated Output Current for Elevators (A)	14	18	24	31	39	47	75	91	113	138	188
육 Maximum Output Voltage (V)	3-phase Proportional to Input Voltage										
O Output Frequency (Hz)	$0.00 \sim 120.00 \mathrm{~Hz}$										
Carrier Frequency (kHz)	15 kHz						9 kHz			6 kHz	
\%) Rated Input Current (A)	14	18	24	31	39	47	56	67	87	101	122
产 Rated Voltage	3-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$										
$\stackrel{\text { Voltage Tolerance }}{ }$	$\pm 10 \%$ (342~528 V)										
드 Frequency Tolerance	$\pm 5 \%(47 \sim 63 \mathrm{~Hz})$										
Cooling Method	Fan Cooled										
Weight (kg)	8	10	10	13	13	13	36	36	36	50	50

## Appendix A Specifications

## NOTE

**Rated Output Current for Elevators (A)


Event	Description	Time(s)	Current
$\# 1$	Per torque	1.5	$100 \%$
$\# 2$	Accel up	3	$175 \%$
$\# 3$	Cruise	10	$100 \%$
$\# 4$	Decel up	3	$115 \%$
$\# 5$	Post	1.5	$140 \%$
$\# 6$	Per torque	1	$100 \%$
$\# 7$	Rest	10	$0 \%$
*1	Per torque	1.5	$100 \%$
*2	Accel up	3	$140 \%$
*3	Cruise	10	$80 \%$
*4	Decel up	3	$140 \%$
*5	Post	1.5	$140 \%$
*6	Per torque	1	$100 \%$
*7	Rest	10	$0 \%$


General Specifications		
	Control System	1: V/f, 2: VF+PG, 3: SVC, 4: FOC+PG, 5: TQR+PG, 6:FOC+PM
	Start Torque	Starting torque is $150 \%$ at 0.5 Hz and 0 Hz with control modes FOC + PG and FOC+PM
	Speed Control Range	1:100 Sensorless vector (up to 1:1000 when using PG card)
	Speed Control Resolution	$\pm 0.5 \%$ Sensorless vector (up to $\pm 0.02 \%$ when using PG card)
	Speed Response Ability	5 Hz (up to 30 Hz for vector control)
	Max. Output Frequency	0.00 to 120.00 Hz
	Output Frequency Accuracy	Digital command $\pm 0.005 \%$, analog command $\pm 0.5 \%$
	Frequency Setting Resolution	Digital command $\pm 0.01 \mathrm{~Hz}$, analog command: $1 / 4096$ (12-bit) of the max. output frequency
	Torque Limit	Max. is 200\% torque current
	Torque Accuracy	$\pm 5 \%$
	Accel/Decel Time	0.00 to 600.00/0.0 to 6000.0 seconds
	V/f Curve	Adjustable V/f curve using 4 independent points and square curve
	Frequency Setting Signal	$0-+10 \mathrm{~V}, \pm 10 \mathrm{~V}, 4 \sim 20 \mathrm{~mA}$
	Brake Torque	About 20\%
	Motor Protection	Electronic thermal relay protection
	Over-current Protection	The current forces $220 \%$ of the over-current protection and $300 \%$ of the rated current
	Ground Leakage Current Protection	Higher than 50\% rated current
	Overload Ability	Constant torque: $150 \%$ for 60 seconds, variable torque: $200 \%$ for 3 seconds
	Over-voltage Protection	Over-voltage level: Vdc > 400/800V; low-voltage level: Vdc < 200/400V
	Over-voltage Protection for the Input Power	Varistor (MOV)
	Over-temperature Protection	Built-in temperature sensor
	Compensation for the Momentory Power Loss	Up to 5 seconds for parameter setting
	Protection Level	NEMA 1/IP20
	Operation Temperature	$-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
	Storage Temperature	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
	Ambient Humidity	Below 90\% RH (non-condensing)
	Vibration	$9.80665 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G})$ less than $20 \mathrm{~Hz}, 5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})$ at 20 to 50 Hz
	Installation Location	Altitude 1,000 m or lower, keep from corrosive gasses, liquid and dust
	provals	

## Appendix A Specifications | $1 / \pi / 2$

This page intentionally left blank

## Appendix B Accessories

General Precautions

$\square$	This VFD-VL AC motor drive has gone through rigorous quality control   tests at the factory before shipment. If the package is damaged during   shipping, please contact your dealer.
CAUTION	The accessories produced by Delta are only for using with Delta AC motor   drive. Do NOT use with other drive to prevent damage.

## B. 1 All Brake Resistors \& Brake Units Used in AC Motor Drives

$\begin{aligned} & \hline \text { \& } \\ & \frac{\pi}{0} \\ & \hline \\ & \hline \end{aligned}$	Applicable Motor		Full Load Torque Nm	Resistor value spec for each AC Motor Drive	Brake Torque 10\%ED	Min. Equivalent Resistor Value for each AC Motor Drive
	hp	kW				
	7.5	5.5	3.111	2400W $16 \Omega$	125	$16 \Omega$
	10	7.5	4.148	3000W $12 \Omega$	125	$12 \Omega$
	15	11	6.186	4800W $9 \Omega$	125	$9 \Omega$
	20	15	8.248	$4800 \mathrm{~W} 6.8 \Omega$	125	$6.8 \Omega$
	25	18.5	10.281	6000W $6 \Omega$	125	$6 \Omega$
	30	22	12.338	9600W 5 $\Omega$	125	$5 \Omega$
	40	30	16.497	6000W $5 \Omega$	125	$5 \Omega$
	50	37	20.6	$9600 \mathrm{~W} 4 \Omega$	125	$4 \Omega$
	7.5	5.5	3.111	500W $50 \Omega$	125	$50 \Omega$
	10	7.5	4.148	$1000 \mathrm{~W} 40 \Omega$	125	$40 \Omega$
	15	11	6.186	$1000 \mathrm{~W} 33 \Omega$	125	$33 \Omega$
	20	15	8.248	1500W $25 \Omega$	125	$25 \Omega$
	25	18.5	10.281	4800W $21 \Omega$	125	$21 \Omega$
	30	22	12.338	4800W $19 \Omega$	125	$19 \Omega$
	40	30	16.497	$6000 \mathrm{~W} 20 \Omega$	125	$20 \Omega$
	50	37	20.6	9600W $16 \Omega$	125	$16 \Omega$
	60	45	24.745	9600W 13.6 $\Omega$	125	$13.6 \Omega$
	75	55	31.11	$12000 \mathrm{~W} 10 \Omega$	125	$10 \Omega$
	100	75	42.7	19200W $6.8 \Omega$	125	$6.8 \Omega$

## NOTE

1. Please select the recommended resistance value (Watt) and the duty-cycle value (ED\%).
2. Definition for Brake Usage ED\%

Explanation: The definition of the brake usage $\mathrm{ED}(\%)$ is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Recommended cycle time is one minute.

3. For safety consideration, install an overload relay between the brake unit and the brake resistor. In conjunction with the magnetic contactor (MC) prior to the drive, it can perform complete protection against abnormality. The purpose of installing the thermal overload relay is to protect
the brake resistor from damage due to frequent brake, or due to brake unit keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent damaging the brake resistor.
4. If damage to the drive or other equipment are due to the fact that the brake resistors and the brake modules in use are not provided by Delta, the warranty will be void.
5. Take into consideration the safety of the environment when installing the brake resistors.
6. If the minimum resistance value is to be utilized, consult local dealers for the calculation of the Watt figures.
7. Please select thermal relay trip contact to prevent resistor over load. Use the contact to switch power off to the AC motor drive!
8. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table).
9. Please read the wiring information in the user manual of brake unit thoroughly prior to taking into operation.

## Appendix B Accessories | [ $/$ アンVIL

## B.1.1 Dimensions and Weights for Brake Resistors

(Dimensions are in millimeter)

Order P/N: BR080W200, BR080W750, BR300W070, BR300W100, BR300W250, BR300W400, BR400W150, BR400W040


Model no.	L1	L2	H	D	W	Max. Weight (g)
BR080W200	140	125	20	5.3	60	160
BR080W750						
BR300W070	215	200	30	5.3	60	750
BR300W100						
BR300W250						
BR300W400						
BR400W150	265	250	30	5.3	60	930
BR400W040						



Model no.	L1	L2	H	D	W	Max. Weight   (g)
BR500W030	335	320	30	5.3	60	1100
BR500W100						
BR1K0W020	400	385	50	5.3	100	2800
BR1K0W075						

## Appendix B Accessories | [/アアV/L

Order P/N: BR1K0W050, BR1K2W008, BR1K2W6P8, BR1K5W005, BR1K5W040


## B.1.2 Specifications for Brake Unit

		230 V Series		460 V Series		
		2015	2022	4030	4045	4132
	Max. Motor Power (kW)	15	22	30	45	132
	Max. Peak Discharge Current   (A) $10 \% \mathrm{ED}$	40	60	40	60	240
	Continuous Discharge Current   (A)	15	20	15	18	75
	Brake Start-up Voltage (DC)	$\begin{gathered} 330 / 345 / 360 / 380 \\ / 400 / 415 \pm 3 \mathrm{~V} \end{gathered}$		$\begin{array}{\|c\|} \hline 660 / 690 / 720 / 760 / \\ 800 / 830 \pm 6 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} \hline 618 / 642 / 667 / 690 \\ / 725 / 750 \pm 6 \mathrm{~V} \\ \hline \end{gathered}$
	DC Voltage	200~400VDC		400~800VDC		
은$\vdots$은0	Heat Sink Overheat	Temperature over $+95^{\circ} \mathrm{C}\left(203{ }^{\circ} \mathrm{F}\right)$				
	Alarm Output	Relay contact 5A 120VAC/28VDC (RA, RB, RC)				
	Power Charge Display	Blackout until bus (+~-) voltage is below 50VDC				
	Installation Location	Indoor (no corrosive gases, metallic dust)				
	Operating Temperature	$-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$				
	Storage Temperature	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$				
	Humidity	90\% Non-condensing				
	Vibration	$\begin{aligned} & 9.8 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G}) \text { under } 20 \mathrm{~Hz} \\ & 2 \mathrm{~m} / \mathrm{s}^{2}(0.2 \mathrm{G}) \text { at } 20 \sim 50 \mathrm{~Hz} \\ & \hline \end{aligned}$				
Wall-mounted Enclosed Type		IP50				IP10

## B．1．3 Dimensions for Brake Unit

（Dimensions are in millimeter［inch］）

VFDB2015，VFDB2022，VFDB4030，VFDB4045


## Appendix B Accessories| [/アアV/L

VFDB4132


## B. 2 Non-fuse Circuit Breaker Chart

For 1-phase/3-phase drives, the current rating of the breaker shall be within 2-4 times maximum input current rating.

## 3-phase

Model	Recommended Input   Current (A)	Model	Recommended Input   Current (A)
VFD055VL23A	50	VFD220VL23A	175
VFD055VL43A	30	VFD220VL43A	100
VFD075VL23A	60	VFD300VL23A	225
VFD075VL43A	40	VFD300VL43A	125
VFD110VL23A	100	VFD370VL23A	250
VFD110VL43A	50	VFD370VL43A	150
VFD150VL23A	125	VFD450VL43A	175
VFD150VL43A	60	VFD550VL43A	250
VFD185VL23A	150	VFD750VL43A	300
VFD185VL43A	75		

## B. 3 Fuse Specification Chart

Smaller fuses than those shown in the table are permitted.

Model	I (A)   Input	I (A)   Output	Line Fuse	
			Bussmann P/N	
VFD055VL23A	26	25	50	JJN-50
VFD055VL43A	14	13	30	JJN-30
VFD075VL23A	34	33	60	JJN-60
VFD075VL43A	19	18	40	JJN-40
VFD110VL23A	50	49	100	JJN-100
VFD110VL43A	25	24	50	JJN-50
VFD150VL23A	60	65	125	JJN-125
VFD150VL43A	32	32	60	JJN-60
VFD185VL23A	75	75	150	JJN-150
VFD185VL43A	39	38	75	JJN-70
VFD220VL23A	90	90	175	JJN-175
VFD220VL43A	49	45	100	JJN-100

Appendix B Accessories [/TBMI

Model	I (A)	I (A)   Input	Output	Line Fuse	
	I (A)				
VFD300VL23A	110	120	225	JJN-225	
VFD300VL43A	60	60	125	JJN-125	
VFD370VL23A	142	145	250	JJN-250	
VFD370VL43A	63	73	150	JJN-150	
VFD450VL43A	90	91	175	JJN-175	
VFD550VL43A	130	110	250	JJN-250	
VFD750VL43A	160	150	300	JJN-300	

## B. 4 AC Reactor

## B.4.1 AC Input Reactor Recommended Value

$460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3-\mathrm{Ph}$ ase

kW	HP	Fundamental   Amps	Max.   continuous   Amps	Inductance (mH)	
			5\% impedance		
5.5	7.5	12	18	2.5	4.2
7.5	10	18	27	1.5	2.5
11	15	25	37.5	1.2	2
15	20	35	52.5	0.8	1.2
18.5	25	35	52.5	0.8	1.2
22	30	45	67.5	0.7	1.2
30	40	55	82.5	0.5	0.85
37	50	80	120	0.4	0.7
45	60	80	120	0.4	0.7
55	75	100	150	0.3	0.45
75	100	130	195	0.2	0.3

## B.4.2 AC Output Reactor Recommended Value

$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3-\mathrm{Phase}$

kW	HP	Fundamental   Amps	Max.   continuous   Amps	Inductance (mH)	
			5\% impedance		
5.5	7.5	25	37.5	0.5	1.2
7.5	10	35	52.5	0.4	0.8
11	15	55	82.5	0.25	0.5
15	20	80	120	0.2	0.4
18.5	25	80	120	0.2	0.4
22	30	100	150	0.15	0.3
30	40	130	195	0.1	0.2
37	50	160	240	0.075	0.15


kW	HP	Fundamental   Amps	Max.   continuous   Amps	Inductance (mH)	
			5\% impedance		
5.5	7.5	18	27	1.5	2.5
7.5	10	18	27	1.5	2.5
11	15	25	37.5	1.2	2
15	20	35	52.5	0.8	1.2
18.5	25	45	67.5	0.7	1.2
22	30	45	67.5	0.7	1.2
30	40	80	120	0.4	0.7
37	50	80	120	0.4	0.7
45	60	100	150	0.3	0.45
55	75	130	195	0.2	0.3
75	100	160	240	0.15	0.23

## B.4.3 Applications for AC Reactor

Connected in input circuit

Application 1	Question
When more than one AC motor drive is   connected to the same power, one of them   is ON during operation.	When applying to one of the AC motor   drive,   the charge current of capacity may cause   voltage ripple. The AC motor drive may   damage when over current occurs during   operation.

Correct wiring


Application 2	Question
Silicon rectifier and AC motor drive is   connected to the same power.	Surges will be generated at the instant of   silicon rectifier switching on/off. These   surges may damage the mains circuit.

## Appendix B Accessories | [ $/$ アアV/L.

## Correct wiring



Application 3	Question
Used to improve the input power factor, to	When power capacity is too large, line
reduce harmonics and provide protection	impedance will be small and the charge
from AC line disturbances $=$ (surges,	current will be too large. That may damage
switching spikes, short interruptions, etc.).	AC motor drive due to higher rectifier
AC line reactor should be installed when the	temperature.
power supply capacity is 500 kVA or more	
and exceeds 6 times the inverter capacity,	
or the mains wiring distance $\leq 10 \mathrm{~m}$.	

Correct wiring


## B． 5 Zero Phase Reactor（RF220X00A）

Dimensions are in millimeter and（inch）


Cable type （Note）	Recommended WireSize			Qty．	Wiring Method
	AWG	$\mathrm{mm}^{2}$	Nominal $\left(\mathrm{mm}^{2}\right)$		
Single－ core	$\leqq 10$	$\leqq 5.3$	$\leqq 5.5$	1	Diagram A
	$\leqq 2$	$\leqq 33.6$	$\leqq 38$	4	Diagram
Three－ core	$\leqq 12$	$\leqq 3.3$	$\leqq 3.5$	1	Diagram A
	$\leqq 1$	$\leqq 42.4$	$\leqq 50$	4	$\underset{B}{\text { Diagram }}$

Note：600V Insulated unshielded Cable．

## Diagram A

Please wind each wire 4 times around the core．The reactor must be put at inverter output as close as possible．


## Diagram B

Please put all wires through 4 cores in series without winding．


Note 1：The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted i．e．the cable must fit through the center hole of zero phase reactors．

Note 2：Only the phase conductors should pass through，not the earth core or screen．

Note 3：When long motor output cables are used an output zero phase reactor may be required to reduce radiated emissions from the cable．

## B. 6 DC Choke Recommended Values

230V DC Choke

Input voltage	kW	HP	DC Amps	Inductance (mh)
230 Vac   $50 / 60 \mathrm{~Hz}$   3-Phase	5.5	7.5	32	0.85
	7.5	10	40	0.75
	11	15	62	Built-in
	15	20	92	Built-in
	18.5	25	110	Built-in
	22	30	125	Built-in
	30	40	-	Built-in
	37	50	-	Built-in

460V DC Choke

Input voltage	kW	HP	DC Amps	Inductance (mh)
460Vac   $50 / 60 \mathrm{~Hz}$   3-Phase	5.5	7.5	18	3.75
	7.5	10	25	4.00
	11	15	32	Built-in
	15	20	50	Built-in
	18.5	25	62	Built-in
	22	30	80	Built-in
	30	40	92	Built-in
	37	50	110	Built-in
	45	60	125	Built-in
	55	75	200	Built-in
	75	100	240	Built-in

## B. 7 Digital Keypad KPVL-CC01

The digital keypad is the display of VFD-VL series. The following keypad appearance is only for reference and please see the product for actual appearance.

## B.7.1 Description of the Digital Keypad KPVL-CC01




Display of driver status
$S=$ Stop $\quad \circlearrowright=$ Forward running
R=Run
F=Fault
$\circlearrowleft=$ Reverse running

Display Message	Descriptions
FREQ. SETPOINT   So 60.00 Hz	Displays the AC drive Master Frequency
Press MODE key	
OUTPUT FREQ.   So $\quad 0.00 \mathrm{~Hz}$	Displays the actual output frequency present at terminals U/T1, V/T2, and W/T3
Press MODE key	


Display Message	Descriptions
$\begin{array}{ll} \hline \text { DC- BUS } & \text { VOLTAGE } \\ \text { Ra } & 716.0 \mathrm{Vdc} \end{array}$	Displays the voltage of DC BUS
Press MODE key	
OUTPUT CURRENT    So 0.00 Amps	Displays the output current present at terminals U/T1, V/T2, and W/T3
Press MODE key	
OUTPUT VOLTAGE    Sa 0.0 Volt	Displays the output voltage of motor
Press MODE key	
U: Out put Current So $\quad 0.0 \mathrm{Amps}$	User defined unit (Where U= Pr.00-04)
Press MODE key	
PARAM COPY   S』 READ 1	Copy the first set of parameter groups from the drive to the keypad. It can save two sets of parameter groups to keypad. (one set is from group 0 to group 13)
PARAM COPY   So SAVE 1 v1.00	Save the first set of parameter groups from the keypad to other drive. The firmware version is 1.00 .
SYSTEM PARAMETER So 00 -	Displays the group number
Rated Current 27. 10Amp	Displays the actual stored value of the selected parameter
External Fault Fs Fault Code:60	External Fault
-- End. --	Display "End" for approximately 1 second if input has been accepted by pressing PROG/DATA key. After a parameter value has been set, the new value is automatically stored in memory.
- Err. --	Display "Err", if the input is invalid.

## B.7.2 How to Operate the Digital Keypad KPVL-CC01

Selection Mode


In the selection mode, press
$\sqrt{5}$ (10) to set the parameters.
\|F To set parameters


15 $\circlearrowleft \begin{aligned} & \text { return to the } \\ & \text { previous display }\end{aligned}$
In the parameters mode, it will display parameters and parameters definitions

From drive to KPVL-CC01


Press $\sqrt{5}$ and hold on
for about 5 seconds

```
PARAM COPY [!!!!"!]
```



When "READ 1" starts blinking, it starts to save to KPVL-CC01.


Finish to save parameters

From KPVL-CC01 to drive


PARAM COPY So SAVE 1 v1. 00

Press $\sqrt{5}$ and hold on for about 5 seconds

PARAM COPY [ $!\cdots \cdots \cdots!]$ Sr こSAVE 1 V1.00
When "SAVE 1" starts blinking, it starts to save to KPVL-CC01. V1.00 is the firmware version. It fails to save to KPVL-CC01 when it displays $V$--.--. It needs to save parameters from drive to KPVL-CC01 first.


When entering error parameters setting


Enter parameter settings

$$
\begin{array}{ll}
\text { Par amet er } & \text { Reset } \\
\text { S } & 16
\end{array}
$$



Please re-enter the correct value when the setting is blinking.

## B.7.3 Dimension of the Digital Keypad

Unit: mm [inch]


## B.7.4 Recommended Position the Rubber Magnet of the Digital

## Keypad

This rubber magnet is shipped with the digital keypad. Users can adhere to anywhere of the back of the digital keypad to stick on the case of the AC motor drive. Please don't stick on the communication port to prevent reducing magnetic force.



## B． 8 PG Card（for Encoder）

## B．8．1 EMVL－PGABL



1．Terminals descriptions

Terminal Symbols		Descriptions	Specifications
$\stackrel{\Gamma}{\stackrel{p}{\vDash}}$	VP	Power source of encoder（use SW2 to switch $12 \mathrm{~V} / 5 \mathrm{~V}$ ）	Voltage：$+5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ or $+12 \mathrm{~V} \pm 1 \mathrm{~V}$ Current：200mA max．
	OV	Power source common for encoder	Reference level of the power of encoder
	$A, \bar{A}, B, \bar{B}, Z, \bar{Z}$	Incremental line driver input	Line driver RS422   Max．input frequency： 100 kHz
	$\mathrm{u}, \overline{\mathrm{U}}, \mathrm{V}, \overline{\mathrm{V}}, \mathrm{W}, \overline{\mathrm{W}}$	Absolute line driver input（UVW   3－bit code）	Line driver RS422   Max．input frequency： 50 kHz
	$\begin{aligned} & \mathrm{A} / \mathrm{O}, \overline{\mathrm{~A}} / \mathrm{O}, \mathrm{~B} / \mathrm{O}, \overline{\mathrm{~B}} / \mathrm{O}, \\ & \mathrm{Z} / \mathrm{O}, \mathrm{Z} / \mathrm{O} \end{aligned}$	Signal output for PG feedback card and can be used as a frequency divider．	Line driver RS422   Max．output frequency： 100 kHz
$\cdots$	－	Grounding	Connected to the grounding of the power of the AC motor drive and used for PG shielding

2. Wire length

Types of Pulse   Generators	Maximum Wire Length	Wire Gauge
Line Driver	100 m	$1.25 \mathrm{~mm}^{2}$ (AWG16) or above

3. Types of Pulse Generators (Encoders)

## Line driver


4. Output Signal Setting of the Frequency Divider

It generates the output signal of division factor RESERVE: reserved bit (PIN1)
" n " after dealing with the input pulse. Please
set by the switch SW1 on the card.



I/MODE: input type setting of the division pulse (PIN 2)
O/MODE: output type setting of the division pulse (PIN 3)
RST: clock reset bit (PIN 4)
Division factor: setting for division factor n :
1~256 (PIN5~12)

$\begin{aligned} & \underset{\sim}{\boldsymbol{u}} \\ & \text { 足 } \\ & \underset{\sim}{u} \\ & \underset{\sim}{u} \end{aligned}$		$\begin{aligned} & \text { w } \\ & \text { O} \\ & \sum_{0}^{0} \end{aligned}$	$\stackrel{\llcorner }{\boxed{\infty}}$	Division factor	
				A leads B	$B$ leads A
X	0	0	1		
X	0	1	1		
X	1	X	1		

## NOTE

■ When the switch is ON , it means logic 0 .

- $A-/ A$ and $B-/ B$ are the input signals of $P G$ card. $A / O-/ A / O$ and $B / O-/ B / O$ are the line driver outputs of the frequency divider measured by the differential probe.
- PIN1 is reserved.

■ PIN 5~12 are the denominator for the frequency divider. PIN 5 is the low bit (EX: the setting of $\mathrm{XXXX10101010}$ is that the input signal divides by 85).

■ When PIN 2 and PIN 3 are set to 0 ，the input signals（A－／A and B－／B）of PG card should be square wave and $\mathrm{A} / \mathrm{O}-/ \mathrm{A} / \mathrm{O}$ and $\mathrm{B} / \mathrm{O}-/ \mathrm{B} / \mathrm{O}$ are the outputs of frequency divider．

■ When PIN 2 is set to 0 and PIN 3 is set to 1 ，the input signals（A－／A and B－／B）of PG card should be square wave and $B / O-/ B / O$ is the indication of phase $A$ and $B$ ．（ $E X$ ：LOW means $A$ leads $B$ and HIGH means $B$ leads $A$ ）．A／O－／A／O is the output of frequency divider．

■ When PIN 2 is set to 1 and PIN 3 is set to $X, B-/ B$ should be the input signal of direction indication．（ $E X$ ：when $B-/ B$ is LOW，it means that $A$ leads $B$ ．When $B-/ B$ is HIGH，it means that $B$ leads $A$ ．$A-/ A$ is a square wave input．$B / O-/ B / O$ and $B-/ B$ should be input synchronously． $\mathrm{A} / \mathrm{O}-\mathrm{A} / \mathrm{O}$ is the output of frequency divider．
－Z／O－／Z／O of the PG card will act by the input signal of $Z-/ Z$ and don＇t have the function of frequency divider．
－When changing the denominator of the frequency divider or input／output type，it needs to clear the counter value by clock reset bit（PIN4）before operation．Please set the switch to 1 after reset．

## B．8．2 EMVL－PGABO



3．Terminals descriptions

Terminal Symbols		Descriptions	Specifications
$\stackrel{\overline{\mathrm{p}}}{⺊}$	VP	Power source of encoder	Voltage：$+12 \mathrm{~V} \pm 1 \mathrm{~V}$   Current：200mA max．
	OV	Power source common for encoder	Reference level of the power of encoder
	$A, \bar{A}, B, \bar{B}, Z, \bar{Z}$	Incremental line driver input	Open collector signal input．   Max．bandwidth is 100 kHz   Please notice that $\bar{A}, \bar{B}, \bar{Z}$ and OV should be short circuit．

Appendix B Accessories [/ $/ 2 \cdot / 1$

Terminal Symbols		Descriptions	Specifications
A/O, $\bar{A} / O, B / O, \bar{B} / O$,   $Z$	Signal output for PG feedback   card and can be used as a   frequency divider.	Line driver RS422   Max. output frequency: 100 kHz	
	Grounding	Connected to the grounding of the   power of the AC motor drive and   used for PG shielding	

2. Wire length

Output Type of the   Encoder	Maximum Wire Length	Wire Gauge
Open collector	50 m	$1.25 \mathrm{~mm}^{2}$ (AWG16) or above

3. Output Type of Encoder

Open collector
VCC

EMVL-PGABO


## 4. Output Signal Setting of the Frequency Divider

It generates the output signal of division factor
" n " after dealing with the input pulse. Please set by the switch SW1 on the card.



RESERVE: reserved bit (PIN1)
I/MODE: input type setting of the division pulse (PIN 2)
O/MODE: output type setting of the division pulse (PIN 3)
RST: clock reset bit (PIN 4)
Division factor: setting for division factor n :
1~256 (PIN5~12)

Settings and explanations

山   $\underset{\sim}{x}$   $\underset{\sim}{u}$   $\underset{\sim}{u}$	$\begin{aligned} & \text { ш } \\ & \text { O} \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \text { ய } \\ & \text { O } \\ & \sum_{\mathbf{O}}^{\mathbf{O}} \end{aligned}$	$\underset{\substack{\infty\\}}{\substack{2}}$	Division factor	
				A leads B	$B$ leads A
X	0	0	1		
X	0	1	1		
X	1	X	1		

[1~TML

- When the switch is ON , it means logic 0 .
- $A-/ A$ and $B-/ B$ are the input signals of $P G$ card. $A / O-/ A / O$ and $B / O-/ B / O$ are the line driver outputs of the frequency divider measured by the differential probe.
- PIN1 is reserved.
- PIN 5~12 are the denominator for the frequency divider. PIN 5 is the low bit (EX: the setting of $\mathrm{XXXX10101010}$ is that the input signal divides by 85).
■ When PIN 2 and PIN 3 are set to 0 , the input signals (A-/A and B-/B) of PG card should be square wave and $\mathrm{A} / \mathrm{O}-/ \mathrm{A} / \mathrm{O}$ and $\mathrm{B} / \mathrm{O}-/ \mathrm{B} / \mathrm{O}$ are the outputs of frequency divider.
■ When PIN 2 is set to 0 and PIN 3 is set to 1 , the input signals ( $A-/ A$ and $B-/ B$ ) of PG card should be square wave and $B / O-/ B / O$ is the indication of phase $A$ and $B$. ( $E X$ : LOW means $A$ leads $B$ and HIGH means $B$ leads $A$ ). A/O-/A/O is the output of frequency divider.

■ When PIN 2 is set to 1 and PIN 3 is set to $X, B-/ B$ should be the input signal of direction indication. (EX: when $B-/ B$ is LOW, it means that $A$ leads $B$. When $B-/ B$ is HIGH, it means that $B$ leads $A$. $A-/ A$ is a square wave input. $B / O-/ B / O$ and $B-/ B$ should be input synchronously. $\mathrm{A} / \mathrm{O}-\mathrm{IA} / \mathrm{O}$ is the output of frequency divider.

■ Z/O-/Z/O of the PG card will act by the input signal of Z-IZ and don't have the function of frequency divider.

- When changing the denominator of the frequency divider or input/output type, it needs to clear the counter value by clock reset bit (PIN4) before operation. Please set the switch to 1 after reset.


## B.8.3 EMVL-PGH01 (only for Heidenhain ERN1387)



1. Sinusoidal Encoder Function


Heidenhain ERN1387


## 2. Terminals descriptions

Terminal Symbols		Descriptions	Specifications
$\xrightarrow{\sim}$	$+5 \mathrm{~V}$	Specific power output of encoder	Voltage: $+5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Current: 200mA max.
	OV	Power source common for encoder	Reference level of the power of encoder
	$\begin{aligned} & \text { A+, A-, B+, B-, } \\ & \text { Z+, Z- } \end{aligned}$	Sine line driver input (incremental signal)	

## Appendix B Accessories [/TM-V/L

Terminal Symbols		Descriptions	Specifications
SIN, SIN',   $\mathrm{COS}, \mathrm{COS}$,	Sine line driver input signal   (absolute signal)	0	Cos

## EMVL-PGH01 <br> -PGH01

	를	$\begin{aligned} & \text { 山 } \\ & \text { O } \\ & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { 上 } \\ & \boldsymbol{x} \end{aligned}$	Division factor	
				A leads B	$B$ leads A
X	0	0	1		A／O－／A／O   B／O－／B／O
X	0	1	1		
X	1	X	1	This setting is NOT for EMVL－PGH01	

## NOTE

－When the switch is ON ，it means logic 0 ．
－$A-/ A$ and $B-/ B$ are the input signals of $P G$ card．$A / O-/ A / O$ and $B / O-/ B / O$ are the line drivers of the frequency divider measured by the differential probe．
－PIN1 is reserved．
－PIN 5～12 are the denominator for the frequency divider．PIN 5 is the low bit（EX：the setting of XXXX10101010 is that the input signal divides by 85）．
－When PIN 2 and PIN 3 are set to 0 ，the input signals（A－／A and B－／B）of PG card should be square wave and $A / O-/ A / O$ and $B / O-/ B / O$ are the outputs of frequency divider．
－When PIN 2 is set to 0 and PIN 3 is set to 1 ，the input signals（ $A-/ A$ and $B-/ B$ ）of PG card should be square wave and $B / O-/ B / O$ is the indication of phase $A$ and $B$ ．（ $E X$ ：LOW means $A$ leads $B$ and HIGH means $B$ leads $A$ ）．A／O－／A／O is the output of frequency divider．
－When PIN 2 is set to 1 and PIN 3 is set to $X, B-/ B$ should be the input signal of direction indication．（ $E X$ ：when $B-/ B$ is LOW，it means that $A$ leads $B$ ．When $B-/ B$ is HIGH，it means

## Appendix B Accessories | $\mathrm{V} / \boldsymbol{\pi}-\mathrm{V} / \mathrm{L}$

that $B$ leads $A$. $A-/ A$ is a square wave input. $B / O-/ B / O$ and $B-/ B$ should be input synchronously. A/O-/A/O is the output of frequency divider.

■ Z/O-/Z/O of the PG card will act by the input signal of Z-IZ and don't have the function of frequency divider.

- When changing the denominator of the frequency divider or input/output type, it needs to clear the counter value by clock reset bit (PIN4) before operation. Please set the switch to 1 after reset.


## B.8.4 EMVL-PGS01



Applicable encoders for EMVL-PGS01:
■ EnDat2.1: EQN425, EQN1325, ECN113, ECN413, ECN1113, ECN1313

- HIPERFACE: SRS50/60

1. Pin description


VFD-VL Series	Corresponding terminal	
	EnDat	HIPERFACE®
1	B-	REFSIN
2	0 V	0 V
3	0 V	0 V
4	0 V	0 V
5	$\mathrm{~A}+$	+ COS
6	$\mathrm{~A}-$	REFCOS
7	0 V	0 V
8	$\mathrm{~B}+$	+ SIN
9	VP	VP
10	Data+	Data+
11	Data-	Data-
12	CLOCK+	-
13	CLOCK-	-
14	VP	VP
15	0 V	0 V


2. Terminals descriptions

Terminal Symbols		Descriptions	Specifications
J3	VP	Power source of encoder (use SW2 to switch $12 \mathrm{~V} / 5 \mathrm{~V}$ )	Voltage: $+5 \mathrm{VDC} \pm 5 \%$ or $+8.3 \mathrm{VDC} \pm 6 \%$ Current: 250 mA max.
	OV	Power source common for encoder	Reference level of the power of encoder
	$\begin{aligned} & \mathrm{A}+, \mathrm{A}-, \\ & \mathrm{B}+, \mathrm{B}- \end{aligned}$	Sine line drive input (incremental signal)	Input frequency: 40 kHz max.
	$\begin{aligned} & + \text { SIN, +COS } \\ & \text { REFSIN, } \\ & \text { REFCOS } \end{aligned}$	Sine line drive input (incremental signal)	Input frequency: 20kHz max.
	$\begin{aligned} & \text { CLOCK+, } \\ & \text { CLOCK- } \end{aligned}$	CLOCK line drive output	Line Driver RS422 Level output
	Data+, Data-		RS485 communication interface   Terminal resistor: about $130 \Omega$
TB1	$\begin{aligned} & \mathrm{A} / \mathrm{O}, \overline{\mathrm{~A}} / \mathrm{O}, \\ & \mathrm{~B} / \mathrm{O}, \overline{\mathrm{~B}} / \mathrm{O} \end{aligned}$	Signal output for PG feedback card and can be used as a frequency divider.	Line Driver RS422 Level output
TB2	$\begin{aligned} & \mathrm{OA} \\ & \mathrm{OB} \end{aligned}$	Open collector output signal and can be used as a frequency divider	- Transistor open collector output   - Max. 24VDC, 30mA   - $\mathrm{VOL} \leqq 1.5 \mathrm{~V}(\mathrm{IOL}=30 \mathrm{~mA})$   - $\mathrm{IOH} \leqq 200 \mu \mathrm{~A}(\mathrm{VOH}=24 \mathrm{VDC})$
	GND	Open collector output common	Reference level of NPN transistor open collector output


Terminal Symbols		Descriptions	Specifications
J4	$\ddots$	Grounding	Connected to the grounding of the power   of the AC motor drive and used for PG   shielding

## 4. Output Signal Setting of the Frequency Divider

It generates the output signal of division factor " $n$ " after dealing with the input pulse. Please set by the switch SW1 on the card.


O/MODE: output type setting of the division pulse
RST: clock reset bit
Division factor: setting for division factor n :

$$
1 \sim 31
$$

Settings and explanations
Division factor

- When the switch is ON , it means logic 0 .
- $A-/ A$ and $B-/ B$ are the input signals of $P G$ card. $A / O-/ A / O$ and $B / O-/ B / O$ are the line driver outputs of the frequency divider measured by the differential probe.
- Bit $0-4$ are the denominators for the frequency divider. Bit 0 is the low bit (EX: the setting of 10110 is that the input signal divides by 13).
■ When the output pulse type of frequency divider is set to $0, A / O-/ A / O, B / O-/ B / O, O A-G N D$ and OB-GND are the outputs of frequency divider.
■ When the output pulse type of frequency divider is set to $1, B / O-/ B / O$ and OB-GND are the indication of phase $A$ and $B$. ( $E X$ : LOW means $A$ leads $B$ and HIGH means $B$ leads $A$ ). A/O-/A/O and OA-GND are the output of frequency dividers.
- When changing the denominator of the frequency divider or output type, it needs to clear the counter value by clock reset bit before operation.


## B. 9 AMD-EMI Filter Cross Reference

AC Drives	Model Number	FootPrint
VFD055VL43A, VFD075VL43A, VFD110VL43A,	RF110B43CA	$\mathbf{Y}$
VFD055VL23A, VFD075VL23A, VFD150V43A,   VFD185VL43A	50TDS4W4C	$\mathbf{N}$
VFD110VL23A, VFD150VL23A, VFD220VL43A,   VFD300VL43A, VFD370VL43A	100TDS84C	$\mathbf{N}$
VFD550VL43A, VFD750VL43A	200TDDS84C	$\mathbf{N}$
VFD185VL23A, VFD220VL23A, VFD300VL23A,   VFD450VL43A,	150TDS84C	$\mathbf{N}$
VFD370VL23A,	180TDS84C	$\mathbf{N}$

## Installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

- EN61000-6-4

■ EN61800-3: 1996

- EN55011 (1991) Class A Group 1


## General precaution

1. EMI filter and AC motor drive should be installed on the same metal plate.
2. Please install AC motor drive on footprint EMI filter or install EMI filter as close as possible to the $A C$ motor drive.
3. Please wire as short as possible.
4. Metal plate should be grounded.
5. The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

## Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.

1. Use the cable with shielding (double shielding is the best).
2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
3. Remove any paint on metal saddle for good ground contact with the plate and shielding.


Saddle on both ends


Saddle on one end

## The length of motor cable

When motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:

## Appendix B Accessories |

- Use a motor with enhanced insulation.

■ Connect an output reactor (optional) to the output terminals of the AC motor drive

- The length of the cable between AC motor drive and motor should be as short as possible (10 to 20 m or less)

■ For models $7.5 \mathrm{hp} / 5.5 \mathrm{~kW}$ and above:

Insulation level of motor	1000 V	1300 V	1600 V
460VAC input voltage	$66 \mathrm{ft}(20 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$
230VAC input voltage	$1312 \mathrm{ft}(400 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$

## $\square$ <br> NOTE

When a thermal O/L relay protected by motor is used between AC motor drive and motor, it may malfunction (especially for 460 V series), even if the length of motor cable is only $165 \mathrm{ft}(50 \mathrm{~m})$ or less. To prevent it, please use AC reactor and/or lower the carrier frequency (Pr. 00-17 PWM carrier frequency).

## NOTE

Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor drive.

- If the length is too long, the stray capacitance between cables will increase and may cause leakage current. It will activate the protection of over current, increase leakage current or not insure the correction of current display. The worst case is that AC motor drive may damage.
- If more than one motor is connected to the $A C$ motor drive, the total wiring length is the sum of the wiring length from AC motor drive to each motor.


## B.9.1 Dimensions

Dimensions are in millimeter and (inch)

Order P／N：RF110B43CA


## Appendix B Accessories | $1 / \pi / 2 / 2$

## Order P/N: 50TDS4W4C



Order P/N: 100TDS84C


Order P／N：200TDDS84C


## Appendix B Accessories | [ $/ \pi / 2$

Order P/N: 150TDS84C


Order P/N: 180TDS84C


UNIT:mm

## B. 10 EMVL-IOA01



Terminals	Descriptions
AVO1-AGND AVO2-AGND	Multifunction analog voltage output terminal -10.0V~10.0V   The analog output is defined by Pr.03-17 and Pr.03-20.
MO3~MO10   Multifunction output terminals (photocoupler)	The AC motor drive outputs every monitor signal, such as operation indication, frequency attained and overload indication by the transistor (open collector). Refer to Pr.02-15~02-22 multifunction output terminals for details.

## B. 11 Safety Relay EMVL-SAF01



## B.11.1 Functions of the Terminals

Terminals		Descriptions	Specifications
J1	S1	+24VDC power Input	- Min. activation voltage: +19Vdc
	S2	+24VDC, reference   level of the power	- Impedance: $720+10 \% \Omega$   - Rated power: about 800 mW
S3	A dry contact of a relay	- Rated current: 8 A	

## B.11.2 Wiring of the Safety Relay



## Descriptions

1．When the power +24 VDC is applied to S 1 and S 2 （ S 1 is + ），the relay contacts of $S 3$ and $S 4$ are ON．When the power＋24VDC isn＇t applied to S1 and S2，the relay contacts of S3 and S4 are OFF．At the meanwhile，EMVL－ASF01 can stop the output of the AC motor drive by connecting to JP19 on the control board．It can also be used with MI8 to achieve two safety－loop protections via hardware．

2．Multifunction input MI8
（1）Please remove JP1 from the control board before using safety－loop function．At the meanwhile，the multifunction input MI8 can control the output of the AC motor drive．
（2）operation method：
MI8 is ON：the AC motor drive can output
MI8 is OFF：the AC motor drive can＇t output
NOTE：Please insert JP1 into the control board when this function is disabled．
3．Safety－Relay EMVL－SAF01
（1）Please connect the power of J3 to JP19 on the control board and remove JP18 on the control board．
（2）Operation method：
When the power is applied to $\mathrm{S} 1-\mathrm{S} 2$ ：It is ON and the AC motor drive can output
When the power isn＇t applied to S1－S2：it is OFF and the AC motor drive can＇t output
（3）S3－S4 are the monitor contacts and user can check the safety－loop by this contact．

## NOTE

－Please notice that when J3 of relay board is connected to JP19 of control board，JP18 must be removed when using EMVL－SAF01．
－Please supply the power＋24VDC to S1 and S2 before the AC motor drive is powered on to drive relay．

## Appendix B Accessories | [/アフV.

This page intentionally left blank

## Appendix C How to Select the Right AC Motor Drive

The choice of the right AC motor drive for the application is very important and has great influence on its lifetime. If the capacity of AC motor drive is too large, it cannot offer complete protection to the motor and motor maybe damaged. If the capacity of AC motor drive is too small, it cannot offer the required performance and the AC motor drive maybe damaged due to overloading.

But by simply selecting the AC motor drive of the same capacity as the motor, user application requirements cannot be met completely. Therefore, a designer should consider all the conditions, including load type, load speed, load characteristic, operation method, rated output, rated speed, power and the change of load capacity. The following table lists the factors you need to consider, depending on your requirements.

Item		Related Specification			
		Speed and torque characteristics	Time ratings	Overload capacity	Starting torque
Load type	Friction load and weight load   Liquid (viscous) load Inertia load Load with power transmission	$\bigcirc$			$\bigcirc$
Load speed and torque characteristics	Constant torque Constant output Decreasing torque Decreasing output	$\bigcirc$	$\bigcirc$		
Load characteristics	Constant load   Shock load   Repetitive load   High starting torque   Low starting torque	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
Continuous operation, Short-time operation Long-time operation at medium/low speeds			$\bigcirc$	$\bigcirc$	
Maximum output current (instantaneous) Constant output current (continuous)		$\bigcirc$		$\bigcirc$	
Maximum frequency, Base frequency		$\bigcirc$			
Power supply transformer capacity or percentage impedance   Voltage fluctuations and unbalance   Number of phases, single phase protection Frequency				$\bigcirc$	$\bigcirc$
Mechanical friction, losses in wiring				$\bigcirc$	$\bigcirc$
Duty cycle modification			$\bigcirc$		

## C. 1 Capacity Formulas

## 1. When one AC motor drive operates one motor

The starting capacity should be less than $1.5 x$ rated capacity of $A C$ motor drive The starting capacity=

$$
\frac{k \times N}{973 \times \eta \times \cos \varphi}\left(T_{L}+\frac{G D^{2}}{375} \times \frac{N}{t_{A}}\right) \leq 1.5 \times \text { the_capacity } __{-} o f __{-} A C_{-} \text {motor_drive }(k V A)
$$

## 2. When one AC motor drive operates more than one motor

2.1 The starting capacity should be less than the rated capacity of AC motor drive

Acceleration time $\leqq 60$ seconds

The starting capacity=

$$
\frac{k \times N}{\eta \times \cos \varphi}\left[n_{T}+n_{s}\left(k_{s-1}\right)\right]=P_{c_{1}}\left[1+\frac{n_{s}}{n_{T}}\left(k_{s-1}\right)\right] \leq 1.5 \times \text { the_capacity }{ }_{-} o f_{-} A C_{-} \text {motor_drive }(k V A)
$$

- Acceleration time $\geqq 60$ seconds

The starting capacity=
$\frac{k \times N}{\eta \times \cos \varphi}\left[n_{r}+n_{s}\left(k_{s-1}\right)\right]=P_{C 1}\left[1+\frac{n_{s}}{n_{T}}\left(k_{s-1}\right)\right] \leq t h e_{-}$capacity_of $A C_{-}$motor_drive(kVA)
2.2 The current should be less than the rated current of AC motor drive(A)

- Acceleration time $\leqq 60$ seconds

$$
n_{T}+I M\left[1+\frac{n_{s}}{n_{T}}(k s-1)\right] \leq 1.5 \times \text { the_rated_current_of } A C_{-} \text {motor_drive }(A)
$$

- Acceleration time $\geqq 60$ seconds

$$
n_{T}+I_{M}\left[1+\frac{n_{s}}{n_{T}}(k s-1)\right] \leq t h e_{-} \text {rated _current_of } A C_{-} \text {motor_drive }(A)
$$

2.3 When it is running continuously

- The requirement of load capacity should be less than the capacity of AC motor drive(kVA) The requirement of load capacity=

$$
\frac{k \times P M}{\eta \times \cos \varphi} \leq t h e_{-} \text {capacity_of } A C_{-} \text {motor_drive }(k V A)
$$

- The motor capacity should be less than the capacity of AC motor drive

$$
k \times \sqrt{3} \times V_{M} \times I_{M} \times 10^{-3} \leq t h e_{-} \text {capacity_of } A C_{-} \text {motor_drive }(k V A)
$$

- The current should be less than the rated current of $A C$ motor drive $(A)$

$$
k \times I_{M} \leq t h e _r a t e d_{-} \text {current_of_AC_motor_drive }(A)
$$

## Symbol explanation

$P_{M}$	Motor shaft output for load (kW)
$\eta$	: Motor efficiency (normally, approx. 0.85)
$\cos \varphi$	: Motor power factor (normally, approx. 0.75)
$V_{M}$	: Motor rated voltage(V)
$I_{M}$	: Motor rated current(A), for commercial power
$k$	: Correction factor calculated from current distortion factor (1.05-1.1, depending on PWM method)
$P_{C 1}$	: Continuous motor capacity (kVA)
$k s$	: Starting current/rated current of motor
$n_{T}$	: Number of motors in parallel
$n_{s}$	: Number of simultaneously started motors
$G D^{2}$	: Total inertia ( $\mathrm{GD}^{2}$ ) calculated back to motor shaft ( $\mathrm{kg} \mathrm{m}^{2}$ )
$T_{L}$	: Load torque
$t_{A}$	: Motor acceleration time
N	: Motor speed

## C. 2 General Precaution

## Selection Note

1. When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit and the converter section may be damaged. To avoid this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the current and improve the input power efficiency.
2. When a special motor is used or more than one motor is driven in parallel with a single AC Motor Drive, select the AC Motor Drive current $\geq 1.25 x$ (Sum of the motor rated currents).
3. The starting and accel./decel. characteristics of a motor are limited by the rated current and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L. (Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If higher starting torque is required (such as for elevators, mixers, tooling machines, etc.) use an AC Motor Drive of higher capacity or increase the capacities for both the motor and the AC Motor Drive.
4. When an error occurs on the drive, a protective circuit will be activated and the AC Motor Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an external mechanical brake is needed to quickly stop the motor.

## Parameter Settings Note

1. The AC Motor Drive can be driven at an output frequency up to 400 Hz (less for some models) with the digital keypad. Setting errors may create a dangerous situation. For safety, the use of the upper limit frequency function is strongly recommended.
2. High DC brake operating voltages and long operation time (at low frequencies) may cause overheating of the motor. In that case, forced external motor cooling is recommended.
3. Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.
4. If the stall prevention function is activated, the accel./decel. time is automatically extended to a length that the AC Motor Drive can handle. If the motor needs to decelerate within a certain time with high load inertia that can't be handled by the AC Motor Drive in the required time, either use an external brake resistor and/or brake unit, depending on the
model, (to shorten deceleration time only) or increase the capacity for both the motor and the AC Motor Drive.

## C. 3 How to Choose a Suitable Motor

## Standard motor

When using the AC Motor Drive to operate a standard 3-phase induction motor, take the following precautions:

1. The energy loss is greater than for an inverter duty motor.
2. Avoid running motor at low speed for a long time. Under this condition, the motor temperature may rise above the motor rating due to limited airflow produced by the motor's fan. Consider external forced motor cooling.
3. When the standard motor operates at low speed for long time, the output load must be decreased.
4. The load tolerance of a standard motor is as follows:

5. If $100 \%$ continuous torque is required at low speed, it may be necessary to use a special inverter duty motor.
6. Motor dynamic balance and rotor endurance should be considered once the operating speed exceeds the rated speed $(60 \mathrm{~Hz})$ of a standard motor.
7. Motor torque characteristics vary when an AC Motor Drive instead of commercial power supply drives the motor. Check the load torque characteristics of the machine to be connected.

## Appendix C How to Select the Right AC Motor Drive |

[ファVM
8. Because of the high carrier frequency PWM control of the VFD series, pay attention to the following motor vibration problems:

■ Resonant mechanical vibration: anti-vibration (damping) rubbers should be used to mount equipment that runs at varying speed.

■ Motor imbalance: special care is required for operation at 50 or 60 Hz and higher frequency.

- To avoid resonances, use the Skip frequencies.

9. The motor fan will be very noisy when the motor speed exceeds 50 or 60 Hz .

## Special motors:

1. Pole-changing (Dahlander) motor:

The rated current is differs from that of a standard motor. Please check before operation and select the capacity of the AC motor drive carefully. When changing the pole number the motor needs to be stopped first. If over current occurs during operation or regenerative voltage is too high, please let the motor free run to stop (coast).
2. Submersible motor:

The rated current is higher than that of a standard motor. Please check before operation and choose the capacity of the AC motor drive carefully. With long motor cable between AC motor drive and motor, available motor torque is reduced.
3. Explosion-proof (Ex) motor:

Needs to be installed in a safe place and the wiring should comply with the (Ex) requirements. Delta AC Motor Drives are not suitable for (Ex) areas with special precautions.
4. Gear reduction motor:

The lubricating method of reduction gearbox and speed range for continuous operation will be different and depending on brand. The lubricating function for operating long time at low speed and for high-speed operation needs to be considered carefully.
5. Synchronous motor:

The rated current and starting current are higher than for standard motors. Please check before operation and choose the capacity of the AC motor drive carefully. When the AC motor drive operates more than one motor, please pay attention to starting and changing the motor.

## Power Transmission Mechanism

Pay attention to reduced lubrication when operating gear reduction motors，gearboxes， belts and chains，etc．over longer periods at low speeds．At high speeds of $50 / 60 \mathrm{~Hz}$ and above，lifetime reducing noises and vibrations may occur．

## Motor torque

The torque characteristics of a motor operated by an AC motor drive and commercial mains power are different．
Below you＇ll find the torque－speed characteristics of a standard motor（4－pole，15kW）：


V／f for $220 \mathrm{~V} / 60 \mathrm{~Hz}$


Motor


Frequency（Hz） Base freq．：60Hz V／f for $220 \mathrm{~V} / 60 \mathrm{~Hz}$


## Appendix C How to Select the Right AC Motor Drive｜ ［／アアVリ．

This page intentionally left blank．


[^0]:    Pr.10-01
    Encoder Pulse

[^1]:    Settings $\quad 0.00 \sim 120.00 \mathrm{~Hz}$

[^2]:    cc HW Error
    Fs Faul t Code: 36

